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Abstract: Simulation of Land use/Land cover (LULC) change has been conducted 
extensively in the past with varying techniques and methodologies with Markov Chain 
incorporating Cellular Automata approach among those. The Markov–Cellular Automata 
(Markov_CA) model has been applied worldwide, however, model parameter calibration is 
site–specific. In Viet Nam, research on LULC change a pressing issue given the rapid 
socio–economic development. Research on LULC change is a necessary starting point for 
impacts assessment on water resources, land resources, ecosystems, environment, etc. 
However, what we lack is a method for modeling our insights to simulate LULC 
fluctuations and to project future LULC. Therefore, this article offers a way to combine 
known problems to produce a new result. The change of LULC for the period 2005–2015 
will be simulated and will result in a prediction of the LULC of 2030. In addition, the 
calibrated Markov_CA model adapted to the study area will also be a valuable reference for 
employment in similar areas. Finally, the expected results and the calibrated model are 
validated by the Kappa coefficient and provide a good level of agreement. 

Keywords: Land use/Land cover Change; Markov Chain; Cellular Automata; Ca River 
Basin; Viet Nam. 

 

1. Introduction 

Land change science has emerged as a fundamental component of global environmental 
change and sustainability research [1]. Land use/land cover (LULC) has interaction with soil, 
water resources, biodiversity, ecosystem, climate [2]. Changes in land use and land cover 
will consequently result in the changes of the latter. LULC changes are often caused by two 
influencing factors: anthropogenic and natural [3]. Human–induced land cover change such 
as deforestation has been a major contributor to increasing CO2 concentration [4], the rapid 
expansion of agriculture reduce available freshwater given the intensive water use nature of 
agriculture (70% of total freshwater used by humankind), land exploitation disrupts the biotic 
function of soils [2]…. However, these changes can also be caused by natural factors, in 
particular vegetation cover [3]. Therefore, detecting and projecting LULC dynamics is 
necessary.  
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Recent advances in remote sensing data and growing advances in their temporal, spatial, 
and spectral resolutions provide useful data and tools for the detection of changes on LULC 
at different scales [5]. Remote sensing and geographical information system (GIS) together 
can provide an accurate depiction of changes in LULC [6], while remaining cost–effective 
[7].  

A typical approach to simulate and predict LULC changes is to investigate the factors 
contributing to the land transitions and to provide a probabilistic prediction of where the 
changes may occur through modeling [5, 8]. There are various modelling approaches for the 
simulation and exploration of LULC changes [9–10]. According to [11] a set of 19 land–use 
models were reviewed in detail as representative of the broader set of models identified from 
the more comprehensive review of the literature. They included Markov models, Cellular 
Automata models, logistic regression models, econometric models, weights models, etc. 

Markov model is stochastic modeling that uses evolution from “t–1” to “t” to project 
probabilities of changes for a future date “t+1” [12]. However, a stochastic Markov model is 
not appropriate because it does not consider spatial knowledge distribution within each 
category and transition probabilities are not constant among landscape states; so it may 
forecast the right magnitude of change but not the right direction [13]. This deficiency of the 
Markov model can be offset through the integration with other spatial component models 
[14]. Hence, the Cellular Automata Markov model combines the concepts of Markov Chain, 
Cellular Automata, Multi–Criteria Evaluation and Multi–Objective Land Allocation [8] is an 
interesting approach to modeling both spatial and temporal changes. [8] also determined that 
Cellular Automata Markov gave the approximate results to Multi–Layer Perceptron Markov 
[15] and outperformed Stochastic Markov in various validation techniques including: per 
category method, kappa statistics, components of agreement and disagreement, three map 
comparison, and fuzzy method. 

The article aims to combine the scientific basis of the Markov–Cellular Automata 
method and the practice of the Ca River basin to find the influencing factors and model 
parameters to simulate the change of land cover in the Ca River basin. At the same time, the 
results of the article are the future land cover in 2030 of the Ca River basin will also 
supplement the data source – which is still lacking, to serve the planning and management of 
water resources in this area. 

2. Study area and data used  

2.1. Description of the study area 

The Ca River system is a transnational basin originating from the upper 2000 m high 
mountain range in Xieng Khuang province of Laos, flowing northwest–southeast before 
entering the North Central of Viet Nam and pouring into the sea at the Hoi estuary. The Ca 
River system is located between 18o15’50” to 20o10’30” north latitude; and 103o45’20” to 
105o15’20” east longitude. The outlet of the basin is at 18o45’27” north latitude; and 
105o46’40” east longitude. The starting point of the Ca River system within Viet Nam is at 
19o24’59” north latitude; and 104o04’12” east longitude [16]. 

The mainstream of the Ca River system is approximately 513 km in length, of which the 
length of the reach within Viet Nam’s territory is 361 km long [17]. The mainstream flows 
through most parts of Nghe An Province, known as the Ca river. In Anh Son District, the 
river receives tributary is the Hieu River. Downstream of the Ca River is its confluent with 
the La river flowing from Ha Tinh Province. From this reach to the sea, the river is called the 
Lam river (Figure 1).  

The basin area within Viet Nam is 17,730 km2 in a total basin area of 27,200 km2 [18]. 
Every year, the basin receives an average precipitation of 1100 ÷ 2500 mm. In the large 
rainfall centers such as upstream of Hieu, La Rivers, average annual rainfall could be as high 
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as 2000 ÷ 2400 mm. Land cover in the river basin composes of 44% forest, 16% paddy rice, 
2% vegetable and crops, 38% others [19]. 

 

Figure 1. Ca River Basin. 

2.2. Data used  

2.2.1. Remote sensing data 

In order to study how the landscape has changed over the 2005–2015 period, land cover 
maps of 2005–2010–2015 should be developed. The maps are based on LANDSAT image 
data from the United States Geological Survey (USGS). The collected images were 
LANDSAT 5 TM and LANDSAT 8 OLI/ TIRS with the same resolution of 30 m (Table 1), 
where the image of path 127 rows 47 was the largest covering, approximately 80% of the 
whole Ca river basin. Selected images based on the criteria: low cloud cover, no “scan line” 
error, the time of the image is not too far apart, especially the images 127–47. 

The Landsat 5 TM images consist of six spectral bands with a spatial resolution of 30 
meters for Bands 1–5 and 7. Landsat 8 OLI and TIRS images consist of nine spectral bands 
with a spatial resolution of 30 meters for Bands 1 to 7 and 9. The ultra–blue Band 1 is useful 
for coastal and aerosol studies. Band 9 is useful for cirrus cloud detection. The resolution for 
Band 8 (panchromatic) is 15 meters. Thermal bands 10 and 11 are useful in providing more 
accurate surface temperatures and are collected at 100 meters [20]. For LULC classification, 
images are collected as shown in (Table 1). High spatial resolution images from Google 
Earth and current land use status map published by the Department of Survey, Mapping and 
Geographic Information Viet Nam are used to validate the results. 

Table 1. Description of the data sources and types used in this study. 

Year Data type and resolution Path–row Date Source 

2005 Landsat 5 TM 

30 m 

126–47 

126–48 

127–46 

14th July 2005 

09th April 2005 

18th May 2005 

https://earthexplorer.usgs.gov/ 

127–47 18th May 2005 

128–46 23rd April 2005 

128–47 07th April 2005 
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Year Data type and resolution Path–row Date Source 

2010 Landsat 5 TM 

30 m 

126–47 

126–48 

127–46 

12th July 2010 

12th July 2010 

08th Nov 2010 

https://earthexplorer.usgs.gov/ 

127–47 08th Nov 2010 

128–46 21st April 2010 

128–47 30th Oct 2010 

2015 Landsat 8 OLI/TIRS 

30 m 

126–47 

126–48 

127–46 

11th Aug 2015 

28th Sept 2015 

30th May 2015 

https://earthexplorer.usgs.gov/ 

127–47 30th May 2015 

128–46 28th Oct 2015 

128–47 28th Oct 2015 

2.2.2. Ancillary data and field data (GPS) 

a) Digital Elevation Model–DEM 
ASTER Global Digital Elevation Model 2.0 data (GDEM 2.0) is a product of the 

Ministry of Economy, Trade, and Industry (METI) and National Aeronautics and Space 
Administration (NASA) collected from the US Geological Survey (USGS). GDEM 2.0 was 
announced by METI and NASA in mid–October 2011, inheriting almost all the features of 
GDEM 1.0 with a resolution of 30 m, covering from latitude 83o North to 83o South. But 
GDEM 2.0 has a higher horizontal resolution by using a 5×5 correlation kernel instead of 9×9 
as used for GDEM 1.0. GDEM 2.0 has a total accuracy of 17 m compared to 20 m of GDEM 
1.0 along with a 95% certainty [21] (ASTER–GDEM, October 2011). 

The DEM data for the study area were collected from latitude 18o to 19o North, longitude 
103o to 105o East. The ArcSWAT tool is then used to calculate flow direction, accumulate 
flow, create sub–basin area, create flow net, discharge outlet, etc [22]. 

b) Current land use status map 
Beginning in 1999, under Directive 24/1999/CT–TTg of the Prime Minister of Viet Nam 

on land inventory is issued in 2000. Since then, the inventory and mapping of current land 
use status have been performed in 2005, 2010, 2015 (Figure 2). They are valuable ancillary 
references for LULC classification. 

The current land use status map is a map showing the distribution of land categories 
according to the regulations on an inventory of land use purposes at the time of land 
inventory. The current land use status map is drawn up on the basis of the cadastral map, in 
comparison with the field data and land inventory data; In case no cadastral map is available, 
use aerial photographs or high–resolution satellite images converted into orthogonal 
photographs combined with field data and land inventories to make the current land use 
status map; In case there are no such maps, current land use status map of the previous period 
is used and also will be checked with field data and land inventory data. 

The land cover based on use purpose includes agriculture production, forestry, 
aquaculture, salt production, other agricultural, built–up, specialized (eg.: State’s office, 
defence, and security, transport, medical, education, etc.), rivers and water surfaces, bare and 
unused land. They can be regrouped into 5 classes: Forest, Agriculture, Built–up, Waterbody, 
and Bare area (Figure 2). 
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c) Field data  
Ground data is collected for classification and verification of classification results. The 

total number of samples acquired is 120 samples. Because the latter works related to three 
periods, all the ground data were consolidated; care was taken to ensure that areas that had 
undergone a change (e.g., burn regeneration) were excluded from the investigation. Through 
consultation with local people, five classes were sampled – Forest, Agriculture, Built–up, 
Waterbody, Bare area – with about 20 ground data for each class. Some test data is 
additionally collected using Google Maps by random points algorithm. 

 

Figure 3. Location of ground data. 

Figure 2. Current land use status map of 

Ca River basin: (a) 2005; (b) 2010; (c) 

2015. 
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3. Theoretical background of the method used 

3.1. Maximum Likelihood classification 

The classification method used is the Maximum Likelihood Classification (MLC), 
which is one of the methods of the Supervised Classification [7, 23]. This method is based on 
a given set of sample pixels and hence identifies pixels with the same spectral characteristics. 
Next, the estimated (Gaussian) probability density function is used to identify other pixels of 
the same land use/land cover [24]. The MLC principle also can be found in Foody and 
Strahler’s researches [24–25]. This is a commonly used method of image classification and 
provides relatively high classification accuracy. 

In this study, the Landsat data were classified with the maximum likelihood decision rule 
and some ancillary data (e.g., DEM, land use data, vegetation index, and textural analysis of 
the Landsat images) were combined through an expert (or hypothesis testing) system to 
improve the classification accuracy [26]. Considering the spectral characteristics of the 
satellite images and existing knowledge of land use/land cover of the study area, five LULC 
categories were identified and classified for 2005, 2010, and 2015 (Table 2). 

Table 2. LULC categories distributed for the classification (Circular 08/2007/TT–BTNMT). 

LULC category Description 

Forest Land with natural forest or planted forests meeting the forest standards (e.g., 

production forests, protection forests, and special–use forests). 

Agriculture Land for agriculture production including Land for planting annual crops (e.g., paddy 

land, grassland used for breeding, other annual crops); Land for perennial crops (e.g., 

orchards, perennial crops). 

Built–up Land for construction of dwelling houses, construction of works, land for offices of 

agencies and non–business works; land protection, security. 

Waterbody Land for rivers and streams and specialized water surfaces, coastal water surface. 

Bare area Land with no purpose of use including unused plain land, unused hill or mountain land, 

Rocky Mountains without forests. 

3.2. Markov Chain 

Markov process is a special random moving from one state to another state at each time 
step via the use of transition probability matrices [14, 27]. The transition probability matrix is 
calculated by assuming that probability distribution over the next state only depends on the 
current state, but not on previous ones [10]. In this study, a probability matrix based on the 
likelihood of the LULC variations between 2005, 2010, and 2015 was used to predict the 
LULC map in 2030. The transition matrix can be presented as follows [14]:  

𝑃 = (𝑃) = ተ

𝑃ଵଵ𝑃ଵଶ … 𝑃ଵ

𝑃ଶଵ𝑃ଶଶ … 𝑃ଶ

…
𝑃ଵ𝑃ଶ … 𝑃

ተ 0 ≤ 𝑃 ≤ 1 ∑ 𝑃 = 1
ୀଵ    (1) 

where P is the transition probability matrix, 𝑃  is the probability of the ith LULC 
changing to jth LULC from initial year to illation year and n is the number of LULC classes. 

The Markov chain model is very powerful to determine the possibility of land–use 
change between two time periods. However, the Markov chain model cannot provide the 
spatial distribution of occurrences of land–use change [28]. 
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3.3. Cellular automata 

Generally, Cellular automata (CA) models aim to simulate the real nature regulations. 
Land–use change modeling using the CA technique is one of the preferred methods because 
it gives explicit spatial modeling results based on defined transition rules [23]. A CA consists 
of discrete cell space, in which states characterize every cell. [29] define a simple CA to 
include the following components: (1) a grid space L on which the model operates, (2) cell 
states Q in the grid space, (3) transition rules f, which determine the spatial dynamic process, 
(4) status of the neighborhood ∆ that influences the central cell. Hence, the spatiotemporal 
changes of state in a system can be described as [30]:  

A = [L,Q, ∆, f]        (2) 
Each Q cell of L grid space will change their state in discrete time steps. The state of a 

cell Q depends on its neighborhood ∆ (the surrounding cells) and the corresponding f 
transition rules. However, the most important concern in the CA model is defining 
appropriate transition rules f based on training data that controls the model [31]. 

3.4. Accuracy assessment 

There are many accuracy assessment methods that have been discussed in the remote 
sensing context e.g., [32–35], but the most widely proposed and used method is confusion 
matrix or error matrix. A measurement termed “percentage of cases correctly allocated” 
derived from a confusion matrix has been used to measure classification accuracy [36]. The 
accuracy of the individual class may be derived from the matrix by relating the number of 
cases correctly allocated to the class to the total number of cases of that class (Figure 3). This 
leads to two concepts: user’s accuracy and producer’s accuracy. The user's accuracy provides 
the user information on the accuracy of the LCLU data against actual data. Producer’s 
accuracy indicates the percentage of samples of a certain (reference) class that were correctly 
classified [37]. These accuracies are calculated based upon the confusion matrix’s row or 
column [38]. 
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 A B C D ∑ 

A n n nେ nୈ nା 

B n n nେ nୈ nା 

C nେ nେ nେେ nେୈ nୋ 

D nୈ nୈ nୈେ nୈୈ nୈା 

∑ nା nା nାେ nାୈ n 

User’s accuracy = 
୬

୬శ
        (3) 

Producer’s accuracy = 
୬

୬శ
       (4) 

Figure 4. Error matrix with n୧୨ representing the proportion of predicted class i and the actual class j. 

On the issue of the chance of agreement, Cohen’s kappa coefficient has been used and be 
adopted as a standard measure of classification accuracy [39]. Kappa takes the chance 



VN J. Hydrometeorol. 2022, 10, 35-54; doi:10.36335/VNJHM.2022(10).35-54 42 

 

agreement into account and Kappa adjusts the percentage correct measure by subtracting the 
estimated contribution of the chance agreement [40]. The definition of Kappa (k) is: 

k =
୮బି ୮

ଵି ୮
         (5) 

where p is the observed proportion correct, pୣ is the expected proportion correct due 
to change. 

4. Proposed methodology for Spatial and Temporal Modeling of Land Cover Change at 
the Ca River Basin (North Central Viet Nam) 

This study employed an integrated Markov – Cellular Automata (Markov–CA) model to 
predict LULC changes for the Ca River basin in the target years 2030. Data preprocessing 
and format unification were achieved using GIS, which provides numerous functions for 
visualizing and analyzing the data [41]. Markov–CA model is applied by TerrSet, developed 
by Clark Labs at Clark University, is an integrated geospatial software with the ability to 
incorporate the IDRISI GIS analysis for monitoring and modeling purposes [42]. In general, 
the flow chart of the methodology is summarized in (Figure 5).  

 

Figure 5. Workflow showing the methodology in the study; *MCE–WLC: Multi–criteria 
evaluation–Weighted linear combination. 

In the first phase, the Landsat images are classified and LULC layers are prepared. In the 
second phase, the Transition Probability Matrix and Transition Areas are calculated with 
Markov Chain Analysis. At the same time, factors and constraints are set up for each land–
use class and fuzzy functions are applied for each factor and assigned Boolean values (0 or 1) 
for constraints. Then Analytical Hierarchy Process and Pairwise Comparison are used to 
assign the weight of each factor. Weighted factors and Boolean constraints are used in the 
MCE–WLC function to generate suitability maps for each LULC type. In the third phase, all 
previous components are thrown into the Cellular Automata module and output to the 
projected LULC map of the next period (2015). In the validation phase, the projected LULC 
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map is compared to the LULC map on the agreement level by the Kappa coefficient. If the 
validation results indicate that a bad agreement, the Weighted factors, and Boolean 
constraints will be reconsidered. Otherwise, the model is ready to predict LULC maps in the 
future. 

5. Result  

5.1. Image processing and classification 

For an accurate assessment of LULC between 2005 and 2015, atmospherically–
corrected surface reflectance Landsat 5 TM and Landsat 8 Operational Land Imager (OLI) 
and Thermal Infrared Sensor (TIRS)  images were collected from the United States 
Geological Survey (USGS) website. All scenes were verified for geometric accuracy and all 
data were projected on WGS 1984, UTM zone 48N.  

Images were stacked, subset, and analyzed in ENVI, ArcGIS software, and classified 
using the maximum likelihood algorithm. Supervised approaches using a maximum 
likelihood classifier algorithm were applied for the extraction of LULC. A modified land–
cover classification system was used for remote sensing data as recommended by [43] and 5 
classes were identified: built–up, forest, agriculture, waterbody, bare area (Table 2). 

Segmentation provides an approach to extracting features from imagery based on 
objects. These objects are created via an image segmentation process where pixels in close 
proximity and having similar spectral characteristics are grouped into a segment. Segments 
exhibiting certain shapes, spectral, and spatial characteristics can be further grouped into 
objects – meaningful object–oriented feature class. The result is a grouping of image pixels 
into a segment characterized by an average color.  

A supervised classification requires collecting training samples as the basis for the 
maximum likelihood algorithm speculating other pixels of the same class. The more accurate 
the data collected, the more accurate the classification. Bands composite method is widely 
used in remote sensing to support that. Each composite has its advantages in classifying 
LULC. A composite image using bands 4, 3, 2 in Landsat 5 TM images or bands 7, 6, 5 in 
Landsat 8 for the red, green, blue channels, respectively will be easier to detect roads, water–
body, and agriculture class. Other composite images are also used to expose other land 
classes e.g. bands 5, 4, 3 or 4, 5, 3 in Landsat 5 TM or 6, 5, 4 in Landsat 8 for forest 
classification. The results are presented in (Figure 6). 

 

Figure 6. The classification map of LULC (a) 2005, (b) 2010, (c) 2015. 
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5.2. Landuse/landcover classification and analysis 

Accuracy assessment has been used to evaluate the accuracy of classified data. 175 test 
samples were selected, of which 90 samples were GPS points collected in the field, the rest 
were randomly selected points from Google Maps. The study calculated and evaluated PA, 
UA, CA, and kappa index for classification data of 2005, 2010, and 2015. The results are 
shown in Table 3. 

Table 3. Accuracy assessment of the Land use/Land cover classification using the validation dataset 
PA: Producers Accuracy; UA: Users Accuracy; CA: Classification Accuracy. 

Land use/Land cover class 
2005 2010 2015 

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Agriculture 68.40 74.28 77.77 80.00 83.33 85.71 

Bare area 74.19 65.71 84.85 80.00 86.11 88.57 

Forest 78.38 82.86 80.00 91.43 91.67 94.29 

Waterbody 87.88 82.86 94.44 97.14 100 100 

Built–up 77.78 80.00 93.33 80.00 93.75 85.71 

Overall CA (%) 77.14 85.71 90.86 

Kappa index 0.7143 0.8214 0.8857 

Accordingly, the PA and UA of each class are greater than 75% for the classification 
data of 2010 and 2015. Particularly for 2005, the PA of agriculture class is only 68.40%, the 
UA of bare area class is only 65.71%, however, PA and UA of other classes still reach over 
75% for all 3 years. Overall Classification Accuracy of classification data for 2005, 2010 and 
2015 is 77.14%, 85.71%, 90.86%, respectively. The Kappa index for 2005 data is 0.71, 2010 
is 0.82, 2015 is 0.88. The CA and Kappa index of 2005 was relatively lower than other years 
can be explained by the fact that test data was collected in 2018, so there are certain 
differences compared to 2005. 

5.3. Generation of Transition Probability Matrix (TPM), Transition Area Matrix (TAM) 

a) TPM 
A transition probabilities matrix determines the likelihood that a cell or pixel will move 

from a land–use category or class to every other category from date 1 to date 2. This matrix is 
the result of cross–tabulation of the two images adjusted by the proportional error and is 
translated in a set of probability images, one for each land–use class [12]. As mentioned 
above, TerrSet software is one of the best platforms to conduct CA–Markov model, which is 
developed by Clark Labs in the U.S. Hence, transition probabilities matrix are built from the 
land–use/land–cover images of 2005–2010 and 2010–2015 by ArcGIS and TerrSet software 
(Table 4). 

Table 4. Transition probability matrix of 2005–2010 and 2010–2015 periods (%). 

 Agriculture 

(%) 

Bare Area 

(%) 

Forest 

(%) 

Water Body 

(%) 

Built–up 

(%) 

2005–2010 Agriculture 42.98 7.14 38.58 1.76 9.54 

 Bare Area 35.74 17.35 43.15 0.39 3.37 

 Forest 22.53 5.97 70.52 0.37 0.61 

 Water Body 24.07 0.63 7.92 63.22 4.15 

 Built–up 18.75 3.15 5.71 1.96 70.43 

2010–2015 Agriculture 63.89 4.26 21.69 1.20 8.96 



VN J. Hydrometeorol. 2022, 10, 35-54; doi:10.36335/VNJHM.2022(10).35-54 45 

 

 Agriculture 

(%) 

Bare Area 

(%) 

Forest 

(%) 

Water Body 

(%) 

Built–up 

(%) 

 Bare Area 25.76 66.40 4.70 0.38 2.75 

 Forest 24.81 3.34 70.76 0.47 0.63 

 Water Body 15.00 0 0 85.00 0 

 Built–up 0 0 0.01 15.97 84.02 

Table 4 shows that the transition probability of agriculture and bare–area is higher than 
forest, built–up, and water–body in the 2005–2010 period. Built–up and water body has only 
little probability to change to another type of land cover, about 15% in the 2010–2015 period.  

b) TAM 
A transition area matrix that records the number of cells or pixels that are expected to 

change from each land–use class to each other land–use class over the next period. This 
matrix is produced by the multiplication of each column in the transition probability matrix 
by the number of cells of corresponding land use in the later image [12]. Overlapping of land 
cover maps in 2005–2010 and 2010–2015 (Figure 6). Set the time interval between two maps 
to be five years, the proportional error to 0.15 in case of Maximum Likelihood Classification. 
The transition area matrix is presented in (Table 5). 

Table 5. Transition area matrix of 2005–2010 and 2010–2015 periods (pixel). 

 Agriculture 

(pixel) 

Bare Area 

(pixel) 

Forest 

(pixel) 

Water Body 

(pixel) 

Built–up 

(pixel) 

2005–2010 Agriculture 3,511,522 583,006 3,151,858 144,081 779,401 

 Bare Area 744,148 361,252 898,504 8,171 70,201 

 Forest 4,778,388 1,265,217 14,955,883 78,376 129,558 

 Water Body 95,896 2,527 31,554 251,882 16,539 

 Built–up 309,583 51,943 94,306 32,381 1,162,909 

2010–2015 Agriculture 5,974,382 398,421 2,028,508 112,114 837,973 

 Bare Area 579,574 1,494,112 105,851 8,601 61,880 

 Forest 4,479,663 602,590 12,778,159 84,471 114,425 

 Water Body 81,596 0 0 462,369 0 

 Built–up 19 56 169 358,662 1,886,814 

Table 5 shows a clearer view of how many pixels have changed from a class to another 
class. Specifically, the number of pixels in the forest class has the greatest change in both 
phases, followed immediately by the agriculture class. The class that has the least change is 
the water body. 

5.4. Suitability Map  

Suitability maps present the probability of suitability of a pixel belonging to the 
corresponding LULC class. They range from 0 to 255 with 255 being the most likely and 0 is 
unlikely. Each suitability map is created by transition rules that are formed by the linkage 
between socioeconomic, ecological, and spatial variations (e.g. built–up tends to develop 
near the road). Besides, there are also restrictions on each type of LULC class (e.g. forest 
areas are planned for conservation). Therefore, factors and constraints are two driving forces 
of change that determine which lands to be considered for further development. 
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In this study, slope, digital elevation model (DEM), distance to water bodies, distance to 
main roads were set as driving factors, but also there were constraints considered (e.g. water 
and built–up represented constraints for transition to bare–area). They were chosen because 
of the similarity in their use in many previous studies such as [5, 12, 15, 28, 44–47] and the 
author’s knowledge of the study area. The constraints and factors were standardized into a 
Boolean (0 and 1) character and a continuous scale of suitability from 0 (least suitable) to 255 
(most suitable), respectively. To do that, three types of fuzzy membership function (linear, 
sigmoidal, and J–shaped) and control points were determined as a necessity to measure the 
scale of potential suitability for each class (Table 6). Selection of the type of fuzzy 
membership function and control points is prone to subjectivity and can change according to 
the knowledge of decision–makers [15]. A fuzzy set theory can be found at [48–50]. 

Table 6. Standardization of factors by Fuzzy module. 

Class Factors Functions Control Points 

Agriculture 

Built–up 

Slope J–shaped 

0 degree highest suitability 

0–20 degree decreasing suitability 

>20 degree no suitability 

DEM J–shaped 

0 m highest suitability 

0–350 m decreasing suitability (Agriculture) 

0–150 m decreasing suitability (Built–up) 

> 350 m no suitability (Agriculture) 

> 150 m no suitability (Built–up) 

Distance to rivers Sigmoidal 

< 1.5 km highest suitability 

1.5–5.5 km decreasing suitability 

> 5.5 km no suitability 

Distance to main roads J–shaped 

< 0.2 km highest suitability 

0.2–5 km decreasing suitability 

> 5 km no suitability 

Waterbody 

Slope J–shaped 

0 degree highest suitability 

0–15 degree decreasing suitability 

> 15 degree no suitability 

DEM J–shaped 

0 m highest suitability 

0–300 m decreasing suitability 

> 300 m no suitability 

Distance to rivers Sigmoidal 

< 1 km highest suitability 

1–5 km decreasing suitability 

> 5 km no suitability 

Forest 

Bare area 
Slope Sigmoidal 

< 5 degree no suitability (Forest) 

< 20 degree no suitability (Bare) 

5–18 degree increasing suitability (Forest) 

20–40 degree increasing suitability (Bare) 

> 18 degree highest suitability (Forest) 

> 40 degree highest suitability (Bare) 
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Class Factors Functions Control Points 

DEM Sigmoidal 

< 150 m no suitability (Forest) 

< 1300 m no suitability (Bare) 

150–700 m increasing suitability (Forest) 

1300–1700 m increasing suitability (Bare) 

> 700 m highest suitability (Forest) 

> 1700 m no suitability (Bare) 

Distance to main roads Sigmoidal 

< 1 km no suitability 

1–10 km increasing suitability 

> 10 km highest suitability 

Analytical hierarchy process and pairwise comparison were then applied to develop a set 
of relative weights for a group of factors in a multi–criteria evaluation. The weights were 
developed by providing a series of pairwise comparisons of the relative importance of factors 
to the suitability of pixels for the activity being evaluated. These pairwise comparisons were 
then analyzed to produce a set of weights that sum to 1 [42]. The procedure by which the 
weights are produced follows the logic developed by [51–52]. The larger weight denoted a 
more important criterion in terms of overall factors (Table 7). 

Table 7. Factors and their weights used in the construction of suitability maps. 

Factors Forest Agriculture Built–up Water body Bare area 

Slope 0.5917 0.1740 0.5232 0.3874 0.1571 

DEM 0.3332 0.2696 0.2976 0.1692 0.2493 

Distance to main roads 0.0751 0.0795 0.1222  0.5936 

Distance to rivers  0.4768 0.0570 0.4434  

Consistency ratio 0.01 0.02 0.03 0.02 0.05 

Then, the Multi–Criteria Evaluation (MCE) module was used to make decisions which is 
a choice between alternatives. In an MCE, an attempt is made to combine a set of criteria to 
achieve a single composite basis for a decision according to a specific objective. Through a 
Multi–Criteria Evaluation, these criteria images representing suitability may be combined to 
form a single suitability map from which the final choice will be made [42]. Weighted linear 
combination (WLC) methods are used to include both weighted factors and constraints by the 
logical AND operation. The intersection of all the criteria leads to obtaining suitable areas for 
a specific LULC class (Figure 7). 

5.5. Simulation of the land use/land cover 

The integrated model of Cellular Automata and Markov models can predict LULC changes 
based on two–time intervals. Therefore, the transition probabilities for the period 2005–2010 
along with the basis LULC 2010 were used to simulate LULC in 2015. Each pixel of each 
LULC type was attributed future suitability by the suitability map for each LULC class. In 
addition, a standard 5×5 boolean mask filter was used to analyze the neighborhood definition 
that the suitability weight of the pixels will decrease far from the existing areas and allocate 
preference to the neighboring suitable areas [41]. The number of iterations i is also the 
number of time steps that will be used in the model. Choosing this number is also one of the 
elements that will influence the model’s expected results. Indeed, to reach the optimal 
parameters, the number of iterations was examined in [53]. In the case of this study, the 
number of iterations was tested as 5, 10, and 20 (Figure 8). 
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Simulated 2015 LULC map i=5 

 

Simulated 2015 LULC map i=10 

 

Simulated 2015 LULC map i=15 

 Agriculture 
 Bare area 
 Forest 
 Waterbody 
 Built–up 

  

Figure 8. Simulated LULC map of 2015 at different number of iterations through CA–Markov. 

5.6. Model validation 

Model validation is always an important part to verify and evaluate the accuracy of a 
model. Nevertheless, there are no consolidation criteria for assessing the feasibility of land 
change models [54]. To quantify the proficiency of the model, we need to compare the 
predicted result of the model with a similar and reliable map using the Kappa coefficient 
[55]. But [54, 56] proved that standard Kappa (Cohen’s Kappa) offers almost no useful 
information because it confounds quantification error with location error. Hence, in addition 
to Kappa standard (Kstandard), different components of the Kappa index including the Kappa 

Figure 7. Suitability maps for 

various LULC categories (map 

created using TerrSet); *0 to 

255 shows the scale from 

unsuitability to high suitability: 

(a) Forest; (b) Agriculture; (c) 

Built–up; (d) Waterbody; (e) 

Bare area.   
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for no information (Kno), Kappa for grid–cell level location (Klocation), and Kappa for stratum–
level location (KlocationStrata) were used to supplement the deficiencies [54]. In short, the 
simulated 2015 LULC map was validated with the classified 2015 map, and the results are 
shown below (Table 8). 

Table 8. Summary of Kappa statistics for the models on validation data (2015). 

Kappa Indices 2015 LULC (i = 5) 2015 LULC (i = 10) 2015 LULC (i = 20) 

Kno 0.9507 0.9349 0.9119 

Klocation 0.9178 0.8887 0.8451 

KlocationStrata 0.9178 0.8887 0.8451 

Kstandard 0.9156 0.8865 0.8420 

[57] claimed that associations between two variables that both rely on coding schemes 
with K < 0.7 is often impossible and said that content analysis researchers generally think of 
K > 0.8 as good reliability, with 0.67 < K < 0.8 allowing tentative conclusions to be drawn. 
Therefore, the simulation provided valid results, then the calibrated model could be applied 
for the prediction of future patterns – 2030 LULC map. 

5.7. Future land use/land cover modeling 

After calibration, the CA–Markov model has proven its viability in performing future 
LULC simulations, 2030. Therefore, this model has continued to be used with parameters 
that have been demonstrated to be accurate in study area conditions – the Ca river basin – as 
factors along with its weights and constraints, number of iterations, etc. However, the 
difference was the input data: 1) satellite–derived LULC maps for 2010–2015 were used to 
project the LULC for 2030; 2) constituents that generated factors such as main roads, rivers 
were updated until 2015. The predicted LULC map of 2030 is shown in Figure 9. 

 

Figure 9. Predicted LULC map of 2030. 
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Figure 10. Area (ha) and percentage distribution (%) for each LULC class in 2030. 

 

Figure 11. The predicted amount of change from a) 2005 to 2030; b) 2015 to 2030. 

Figure 9 demonstrates the spatial distribution of each LULC class in 2030 that predicted 
by the CA_Markov model. Figure 10 is a quantitative figure for the number of hectares of 
each type of land: forest, agriculture, built–up, waterbody, bare area corresponding to 55%, 
26%, 10%, 3%, 6% of the total land in 2030. We can also easily see the increase of bare areas 
in the Western uplands by 2030 compared to previous years. In addition, forest areas are 
projected to decline sharply, especially in areas close to agricultural land and built–up land. 
Agricultural land in 2030 increased compared to 2005 (Figure 11a). Specifically, in Figure 
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11b, bare land increased by 4.55%, waterbody increased by 2.27%, built–up land increased 
by 4.17%, agricultural land increased by 6.70% between 2015 and 2030. The area of forest 
land has increased slightly in the period of 2005–2010, but in the years after that figure kept 
going down, especially from 2015 to 2030, the area of forest land decreased by 17.71%. In 
total, hectares were projected to change from 2015 to 2030 were 961777.24 ha, equivalent to 
35.39% of the total studied land area. 

6. Conclusion 

This study demonstrates the feasibility of the Markov Chain and Cellular Automata 
approach for modeling the LULC in the Ca river basin, Viet Nam. The research process also 
clarified the model test and evaluation options, resulting in a calibrated model with 
appropriate parameters for the conditions of the study area. Validation results with Kappa 
coefficients of Kno = 0.95, Klocation = 0.91, KlocationStrata = 0.91, Kstandard = 0.91 showing strong 
agreement between satellite–derived and simulated LULC maps also denote that the model 
has good reliability. 

The results of this study reveal that LULC in the Ca river basin has been, and will 
continue to change. Specifically, by 2030 the area of forest land will be reduced 17.71% and 
transformed into other types of land such as agricultural land 6.70%, construction 4.17%, and 
vacant land 4.55%. This also accurately reflects current socio–economic development trends: 
urbanization, agricultural land expansion, deforestation, etc. The change will increase the 
pressure on other natural factors such as soil status, water resources in this area. This still 
requires further research, but knowing the specific quantitative numbers of the area and type 
of LULC that will change will greatly assist in the process of assessing the impacts of LULC 
on other natural factors. 
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