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Abstract: Runoff reduction is the goal of soil and water conservation in agricultural 

watersheds. Through the runoff, many substances of soil such as sediment, nutrients have 

been eroded to end up in streams, rivers, and lakes. In decades, studies have revealed various 

mitigation, including structure and non–structure conservation ranging from field scale to 

watershed scale. However, the challenges for effectiveness improvement have increased in 

recent years within the impacts of anthropogenic activities such as land use land cover 

change and fluctuation in weather conditions. As a result, the runoff generation has been 

changing in both terms of quantitative and variable sources areas of runoff generation. From 

the understanding of runoff generation mechanisms, including infiltration excess and 

saturation excess, this study was conducted with the objective to propose an application of 

the Soil Topographic Index (STI) and the Soil Conservation Service Curve Number (SCS–

CN) in identifying the areas with high runoff propensity. The method utilized GIS–based 

indices to indicate the high runoff potential areas. The ranking maps were evaluated by 

Wilcoxon rank sum test and Getis–Ord Gi* spatial statistics. Results demonstrated that there 

was a statistical significance of the greater STI in inundated cultivation than STI in 

cultivation areas. However, STI values were not statistically significant in pasture areas. 

Alternatively, the combination of STI and SCS–CN detected the statistical significance 

between calculated indices and inundated observed areas. In conclusion, the combination 

between STI and SCS–CN values is a potential method in redefining runoff generation hot 

spots.  

Keywords: Runoff generation mechanism; SCS–Curve number; Soil topographic index; 

Ranking approaches; Hot spots and cold spots. 
 

1. Introduction 

Runoff and agricultural best management practices (Agricultural BMPs) in soil and 

water conservation has been a research topic for decades. In 1979, agricultural BMPs    

controlling runoff resulted in effectiveness of agricultural BMPs was pointed out [1]. 

Accordingly, the appropriate agricultural BMPs is the lining up between types and purposes 

of BMPs, which is relevant to the term of targeted conservation, recently. For this reason, the 

misleading in runoff generation which may cause inaccuracy in identifying high runoff areas 

has been mentioned in some researches. Since then, many of researches with the purposes to 

fill the deficiency between BMPs design and the runoff generation mechanisms have been 

conducted [2–3]. Most recently, 7Rs – Right product, right conservation practices, right 
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place, right scale, right rate, right method, and right time – again plays an important role in 

precision of soil and water conservation [4].  

Subsequently, there has been many studies concerning either differentiation or 

combination between infiltration excess and/or saturation excess in runoff generation 

mechanisms, which influence the results of runoff generation in term of temporal scales and 

variable sources areas of runoff proneness [2, 5–10]. Importantly, the implication that the 

Soil Conservation Service Curve Number approach (SCS–CN method) should not be applied 

in the manner of only infiltration excess and excluding of saturation excess amongst many 

debates about the application of SCS–CN in rainfall–runoff model [8, 11].  

Therefore, in this study, quantitative indices inferring qualitative rank of runoff 

generation were proposed with the approach of hot spots emergence mechanisms. Hot spot 

definition was initially proposed in 2003 [12]. The concept of hot spots are areas that show 

disproportionately high reaction rates related to the surrounding area (or matrix). Hot 

moments are short periods of time that show disproportionately high rates relative to longer 

intervention time periods. Emergence of hot spot hot moments highlighted the heterogeneity 

characteristics of the phenomenon. Hot spot means the spatial intensive concentration of 

phenomenon at high rate, and hot moment refers to the temporal dimension, during periods 

of time the phenomenon was enhanced. Hot spots and hot moments may overlap or separate. 

Most importantly, hot spots identification strongly depends on generating mechanisms. In 

other word, the meaning of understanding the mechanism is that it can be utilized to predict 

hot spots in the future [12].  

In this research, runoff occurrence was considered a hot spot–hot moment approach due 

to similarity in disproportionately insightful emerged mechanism. Therefore, utilizing the hot 

spots emergence mechanism to contribute the research methodology is a potential approach. 

Also, hot spot theory can apply to emerge the hot spots of critical source areas of sediment, 

nitrogen and phosphorus. The second condition is the spatial scale and temporal scale which 

are the considerable factors in hot spots identification. For instance, the forming of surface 

runoff depends on the integrated impacts of topology, rainfall, soil profile and crop–scape in 

agricultural watersheds. The high runoff propensity area is the area that satisfies all the high 

conditions of four features. Therefore, the ultimate distribution of high runoff areas is defined 

as the areas within the overlapping of these characteristics. 

GIS – based indices application has not been a new approach but there is still a lack of 

using GIS – based indices to propose the hot spots of runoff generation mechanisms in 

combination of SCS – Curve number approach and the Soil Topographic Index (STI). From 

the perspective of runoff generation mechanisms, including infiltration excess and saturation 

excess, this study is conducted with the objective to propose an application of GIS – based 

indices in identifying the areas with high runoff tendency. The study focuses on answering 

the question of how to precisely define the high runoff areas in order to propose a suitable 

soil and water conservation practices and explicit placement of agricultural BMPs. In order 

to answer the research question, the analogy of combination SCS–CN and STI was proposed.  

2. Methodology  

Study area was Callahan Creek watershed in Boone County in Missouri with the area 

approximately 21,960 acres (89 km2). Location of the basin was as in figure 1. The land use 

land cover (LULC) types mainly comprise forestry and agricultural areas such as corn, 

soybean, winter wheat, hay, grass, pasture, and deciduous forest. Also, this area is one of PL–

566 watershed projects – The Watershed Protection and Flood Prevention Act.  

The Digital Elevation Model (DEM) was downloaded from the U.S. Geological Survey 

(USGS) database and soil survey data, land use land cover from the U.S. Department of 

Agriculture (USDA) cropland database at 30m × 30m resolution. The record of inundated 

areas for Missouri and Illinois in May and June 2019 from National Agricultural Statistic 
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Services (USDA–NASS) was employed as observed data. The observed inundated 

cultivation and inundated pasture in this area was extracted; afterward, this observed data 

was converted to point vector data by GIS toolboxes in order to analyze attribute data and 

execute statistical hypotheses test by R packages.  

 

Figure 1. Location of Callahan basin (on the left) and inundated map of Callahan basin (on the right), 

Boone County, Missouri. 

In this study, a proposed approach is that the curve number method can contribute to 

qualitative evaluation in the linkage of hydrologic soil groups, land–use types, and the 

condition of land cover. SCS–CN method was applied by the U.S. Department of Agriculture 

(USDA) in 1972, SCS–CN values indicate the linkage of soil types, antecedent moisture 

condition, land use types, and surface conditions [13]. Employing SCS–CN to produce runoff 

map was mentioned in previous study [14]. Subsequently, the STI was originally developed 

based on the Topographic Wetness Index (TWI) which was respectively published in 1979, 

2000 and 2002 [9, 10, 15]. This index demonstrated interaction between topography and soil 

physical features such as depth of soil and saturated hydraulic conductivity. Applying TWI 

to produce runoff ranking map was proposed in studies [3] and other indexes for targeted 

agricultural BMPs was also mentioned [16]. Most significant, the Soil Topographic index 

(STI) was explained and applied in previous studies [9, 17, 18]. According to, STI was 

calculated as in formulation (1): 

                                                    STI = ln (
αi

tan(βi)ksD
)                       (1) 

where STI is soil topography index; αi is upslope contributing area per unit contour 

length (m); tan(βi) is the local surface topographic slope; ks is the mean saturated hydraulic 

conductivity of the soil (m/day); and D is the soil depth to restrictive layer (m). 

After that, the calculated raster data was executed spatial join with the SCS–CN and 

converted to point vector data, employing the explanation and the guidelines from USDA in 

1986 to identify suitable curve number values [13]. Accordingly, there are four different 

types of SCS–CN values depending on Hydrologic Soil Group (HSGs) in drained conditions 

and LULC conditions. The first letter in the dual HSGs applies to the drained condition, the 

second letter in the dual HSG applies to the undrained condition. As a result, there were four 

different scenarios of SCS–CN values according to the combination of draining conditions 

and LULC conditions. However, the study compared the observed inundated maps at the 

time in which the extreme inundated event occurred in May of 2019. Therefore, the others 
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scenarios were eliminated, only SCS–CN values of undrained condition and LULC in poor 

condition were taken into evaluation. 

Notably, there were inconsistency between LULC map and observed inundated map. 

There were 25 LULC types, while only 6 reclassified types of inundated areas were in the 

inundated areas map.  For example, the deciduous forest in LULC data were reclassified into 

6 different types in inundated map which were inundated cultivation, cultivation, inundated 

pasture, pasture, other, and water areas. Beside the uncertainty of LULC and flooding map, 

the assumption which were HSGs, LULC, saturated hydraulic conductivity, depth to 

restrictive layer of the soil in mean values and depth to restrictive layer as in the soil survey 

database were assigned to calculate STI indices and determine SCS–CN values. Ideally, these 

parameters should be as realistic as possible to reduce uncertainty in calibration. 

In spatial statistic, three distinctions of ranking approaches were proposed and assessed 

by Getis–Ord Gi* hotspots z scores developed by Getis and Ord to analyze spatial patterns 

[19–21]. Spatial autocorrelation was developed based on the first law of geography which is 

“everything is related to everything else, but near things are more related than distant things” 

[22]. Getis–Ord Gi* scores were calculated to illustrate the spatial autocorrelation, though 

this statistic cannot interpret the reason why locations that have statistically significant hot 

spots or cold spots. In other words, this method cannot identify the mechanism which causes 

hot spots or cold spots. In this study, this approach was utilized to clarify the number and the 

location of hot spots. Above all, hot spots of three distinct ranking approaches infer the three 

STI and SCS–CN combinations. Finally, the three distinguished distributions of calculated 

hot spots were compared with the distribution of observed inundated data.  

3. Results and Discussions 

Subsequently, the STI index of Callahan Creek ranged from 3.4 to 27.5 (Figure 2). The 

interpretation is that the higher STI and SCS–CN values represent the higher runoff potential. 

STI distribution was highly skewed to the right which is not normal distribution with the 

density curve is not symmetric and bell–shaped. Quantile plot of SCS–CN values describing 

poor and undrained condition in inundated areas and other types in flooding map evidenced 

a non–normal distribution. The plots indicated the systematic deviations from a straight line. 

Outliers appeared as points that were far away from the overall pattern of the plot. Therefore, 

the statistical method of non–parametric approach was appropriate in these conditions. 

The attribute data obtained two types of variables, including numerical variables and 

categories variables. SCS–CN and STI are numerical variables. The inundated areas of 

flooding map such as cultivation and pasture are categories variables. According to the 

quantile plot of the variables, variable distributions are not normal distributions. Therefore, 

the non–parametric test which are Kruskal Wallis rank sum test, Wilcoxon rank sum test, 

bootstrapping interval confidence calculation were applied to compare between inundated 

areas and out of inundated areas. Spatial point data using Getis – Ord Gi* hot spot was applied 

to identify significant hot spots. The principles of combination between SCS–CN and STI 

were summarized as in figure 3.  

In this proposed method, observation data of inundated areas was important since it was 

utilized to assess the accuracy of the proposed indices. In observed data, each pixel 

represented the condition of inundated areas. In this study area, the inundated map recorded 

the historical inundated of Missouri in May 2019. Accordingly, the inundated areas mainly 

distributed in the cultivated areas and pasture areas. This distribution not only occurred in 

nearly streamflow location. The higher SCS–CN and STI inferred the higher potential of 

runoff. In this study, the condition of LULC at the recorded extreme event was dramatically 

poor condition without cover crops and low capacity of drainage condition. 



VN J. Hydrometeorol. 2022, 11, 43-56; doi:10.36335/VNJHM.2022(11).43-56 47 

 

Figure 2. Narrative description of STI and SCS–CN values in poor and undrained conditions. 

 

Figure 3. The proposed method of combination between SCS–CN and STI. 

Comparing median values between STI inundated areas and STI out of inundated areas 

illustrated that there was a significant difference between STI and SCS–CN in poor and 

undrained condition of all groups. The Null hypothesis was that median of STI in inundated 

areas and median out of inundated areas were equal. The alternative hypothesis was that 

median in inundated areas was different from median out of inundated areas. Figure 4a 

revealed that p value proved statistically significant difference in pair comparisons of STI 

between inundated cultivation and cultivation, inundated pasture and inundated cultivation, 

cultivation and pasture. However, STI between inundated pasture and pasture were not 

different. Figure 4b revealed that p value indicated statistically significant difference in pair 

comparisons of all SCS–CN in poor and undrained condition, but SCS–CN in inundated areas 

were less than those of drained areas. Figure 4c, density distribution highlighted the higher 

values of STI in inundated cultivation in comparison to STI in cultivation. In contrast, figure 

4d revealed the lower values of SCS–CN in inundated cultivation. 
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Figure 4. Kruskal–Wallis rank sum test: (a) Kruskal–Wallis test of STI in 4 types of flooding maps; 

(b) Kruskal–Wallis test of SCS–CN in poor and undrained condition in 4 types of flooding maps; (c) 

Density distribution of STI in cultivation and inundated cultivation; (d) Density distribution of SCS–

CN in cultivation and inundated cultivation. 

Table 1. Wilcoxon rank sum test in pair comparison. 

Wilcoxon rank sum test in the undrained condition 

Variables Group x Group y W p–value 
Alternative 

Hypothesis 

STI Inundated_Cultivation Cultivation 721189 0.0005622 Greater 

PoorCN Inundated_Cultivation Cultivation 375646 9.25E–16 Less 

PoorCN Inundated_Pasture Pasture 19321152 2.20E–16 Less 

In order to evaluate in pair comparison, Wilcoxon rank sum test computed the value of 

p as in Table 1. In STI comparison between inundated cultivation and cultivation, p value 

was 0.0005622, the null hypotheses were rejected and the alternative hypotheses that medians 

of STI distributions for inundated cultivation were statistically significant and greater than 
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that of cultivation areas. It means that the STI distributions for inundated cultivation are likely 

shifted to the right of the STI distributions for cultivation. In SCS–CN evaluation, p values 

are < 2.2e–16, the null hypotheses were rejected and the alternative hypotheses that medians 

of SCS–CN values distributions for inundated cultivation were statistically significant and 

less than those of cultivation and pasture. It means that the SCS–CN values distributions for 

inundated cultivation and inundated pasture are likely shifted to the left of the SCS–CN 

distributions for cultivation and pasture. It infers that SCS–CN values in all cases of 

inundated areas were less than those of drained areas.  

Bootstrap confidence interval calculations in table 2 emphasized the similarity to 

Wilcoxon rank sum test. Only confidence interval of STI between inundated cultivation and 

cultivation were less than 0, bootstrap confidence interval based on 10,000 bootstrap replicate 

times were –0.73851. The others results were greater than or equal to 0. These results 

reinforced the hypothesis that STI in inundated cultivation were higher than STI values in 

cultivation areas.  

Table 2. Bootstrap confidence interval based on 10000 bootstrap replicates. 

Variables Group 1 Group 2 Resample Original BootBias BootSE Method BootMed 

STI Inundated_Cultivation Cultivation 10000 –0.73623 0.003979 0.21386 Med diff –0.73851 

STI Inundated_Pasture Pasture 10000 0.0188 0.002326 0.063783 Med diff 0.01735 

PoorCN Inundated_Cultivation Cultivation 10000 1 0.0524 0.38369 Med diff 1 

PoorCN Inundated_Pasture Pasture 10000 0 0.56395 1.1 Med diff 0 

The previous results clarified that separately applied STI and SCS–CN values 

insufficiently reflected the complex mechanisms of runoff generation in a basin. It is crucial 

to appropriately assemble indices to expose the underlying dynamic processes. Thus, STI and 

SCS–CN in poor and undrained condition were unified to highlight the trend.  In figure 5, 

the boxplot comparison of STI and SCS–CN in poor condition between inundated cultivation 

and cultivation in undrained condition indicated that the p value of Wilcoxon rank sum test 

at SCS–CN 90 was significant. For the inundated pasture, p values of Wilcoxon rank sum 

test at SCS–CN 78 and 79 were significant. At SCS–CN 71, 82, 86, STI of pasture were 

higher than STI of inundated pasture. 
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Figure 5. Parallel comparison of STI and SCS–CN in poor and undrained condition; (a) Wilcoxon 

rank sum test of STI in pairs inundated cultivation and cultivation in each SCS–CN value; (b) 

Wilcoxon rank sum test of STI in pairs inundated pasture and pasture in each SCS–CN value.  

According to the validated results, there were three different ranking approaches. The 

first ranking was solely based on STI values, the second approach was from STI ranking 

which was based on the rank of SCS–CN in poor and undrained condition, the third approach 

was from the ranking in each SCS–CN in poor and undrained condition. Subsequently, Getis–

Ord Gi* hotspots were calculated in each ranking map utilizing GIS toolboxes. In the first 

approach (Figure 6), correlation coefficient between STI and STI ranking was 1 because the 

ranking was only based on STI values. This ranking simplified that a point with a larger STI 

represented a higher STI ranking. Overall, the STI ranking changed exponentially with the 

STI values from SCS–CN 58 to SCS–CN 99. Curve number values did not affect this type 

of ranking. 

 

Figure 6a. STI values and Ranking of STI. 
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Figure 6b. STI values and Ranking based on Ranking of SCS–CN in poor and undrained condition. 

 

Figure 7. STI based on each CN values ranking map. 

The ranking based on the increase of the STI ranking highly depends on the increase of 

SCS–CN values (Figure 6b). The idea is the ranking of STI depends on the increase of SCS–

CN values rather than the increase of STI. Thus, correlation coefficient between STI values 

and ranking of STI was 0.28. First, SCS–CN values were increased from 58 to 99. Then The 

STI were sorted from smallest to largest. The lower SCS–CN values led to the lower ranking 

of STI. In the third ranking approach (Figure 7), STI ranking was based on each SCS–CN 

values ranking. First, SCS–CN values were arranged from smallest to largest. Second, in each 
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SCS–CN value, STI were arranged from 1 to largest. The correlation coefficient was 0.66 

because the ranking depended on the increase of both SCS–CN values and STI values. In this 

case, ranking depend on STI values rather than SCS–CN values.  

The Getis–Ord Gi* statistic computed a z–score in each feature in the dataset. For 

statistically significant positive z–scores, the larger the z–score is, the more intense the 

clustering of high values, named hot–spot. For statistically significant negative z–scores, the 

smaller the z–score is, the more intense the clustering of low values, named cold–spots. From 

three different ranking approaches, three different hot spot maps were generated, including a 

hot spot map of STI ranking, a hot spot map of STI based on SCS–CN values ranking, and a 

hot spot map of STI ranking based on STI in each SCS–CN values. Table 3 and figure 8 

analyzed the distribution of hot spots and cold spots of the third ranking approach, in which 

STI ranking was arranged in each CN values, had the nearest distribution to the distribution 

of inundated areas in each LULC types. 

Table 3. Total number of hotspots and cold spots in the third approach ranking map. 

Hot spots and Cold 

spots in comparison 

with flooding map 

areas 

LULC types 

  

Number of 

Cold spots 

Number of 

Hot spots 

Total cold spots 

and hot spots in 

each LULC types 

–3 –2 –1 1 2 3  

Inundated Pasture 

Corn           7 7 

Deciduous Forest 51 38 19 2     110 

Developed/Open Space   3   2 4   9 

Grass/Pasture 31 31 28 89 72 9 260 

Open Water       1 6 9 16 

Other Hay/Non–Alfalfa 52 37 4       93 

Soybeans       1 2 2 5 

Shrubland 3 1   1 1   6 

Total cold spots and hot spots of inundated   pasture 

in all LULC types 137 110 51 96 85 27 506 

Inundated   cultivation 

Corn         2 30 32 

Deciduous Forest 4 2 1   1   8 

Developed/Open Space         2   2 

Grass/Pasture   1   2 7 3 13 

Open Water           1 1 

Other Hay/Non –Alfalfa 17 5 1       23 

Soybeans         1 8 9 

Total cold spots and hot spots of inundated   

cultivation in all LULC types 21 8 2 2 12 34 88 

Total cold spots and hot spots of inundated areas in 

all LULC types 158 118 53 98 97 61 594 

Figure 8 illustrated the comparison between observed inundated areas and hot spot and 

cold spot distribution from the third approach ranking map. In table 3, total number of cold 

spots and hot spots in corn LULC areas in inundated cultivation and inundated pasture was 

39 points, while the number in the observed inundated map was 40 points in corn LULC type 

(Figure 8). Generally, the number of hot spots and cold spots in the other LULC types 

declined in comparison to observed inundated areas. However, in three approaches of the 

ranking maps, the third ranking approach turned in the best result in comparison with 

observed inundated data. 

Table 3 emerged distribution of hot spots and cold spots in each LULC type and 

compared to the distribution of inundated points in observed inundated areas. Accordingly, 

distribution in the hot spots map and inundated areas distribution in observed inundated areas 

had a similar tendency. The number of hot spots and cold spots decreased from corn to 

soybean. The highest number of hot spots and cold spots were in grass/pasture in both 
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distributions. However, the number of points were neither hot spots nor cold spots, which 

turned in 0 value from Getis–Ord Gi* spatial statistics, and were not analyzed in this 

description. Figure 9 illustrated the distribution of hot spots and cold spots of inundated 

cultivation added in google map of Callahan creek basin. 

Figure 8. Comparison between observed inundated areas and hot spot and cold spot distribution from the 

third approach ranking map. 
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Figure 9. Distribution of hot spots and cold spots of inundated cultivation on google earth map. 

4. Conclusions 

There was a statistical significance of the greater STI in inundated cultivation than STI 

in cultivation areas. However, STI values were not significant in STI comparisons of pasture 

areas. This result requires further observation to analyze the complexity of hydrology in the 

study areas. In other words, saturated excess mechanism is insufficient to explain runoff 

generation in pasture areas in this watershed. Therefore, the combination between STI and 

SCS–CN values demonstrated by the statistical significance of inundated pasture STI refined 

the explanation of runoff generation mechanisms. At some SCS–CN value, STI in inundated 

pasture is statistically higher than those of drained pasture. Thus, strongly recommend that 

STI and SCS–CN values should be combined to produce a ranking map of high runoff 

potential areas. However, the results need to be validated by soil moisture monitoring or by 

field studies. 
Hot spots and cold spots of runoff generation can emerge either within inundated areas 

or out of inundated areas. This challenge demands an appropriate scale analysis and hot spot 

generation mechanism since spatial and temporal resolutions of input data highly affect the 

hot spots of runoff generations. The distributions of hot spot and cold spots varied in each 

LULC type. This fluctuation requires high accuracy of land use land cover data as well as 

distribution of inundated areas. Ranking maps can be highly uncertain in many different 

runoff generation mechanisms. Therefore, it is necessary to be validated based on field 

research. 
The saturated hydraulic conductivity values should be as precise as possible so that the 

values can represent the variation of spatial and temporal scale to emerge the hot spots and 

cold spots. Wilcoxon rank sum test highly depends on the rank sum value of observed data, 

and thus in this study, the quality of LULC data and observed inundated map significantly 

influences the results. 

Callahan Creek  

 

 

 

 

 

 

 

 

 

 

 



VN J. Hydrometeorol. 2022, 11, 43-56; doi:10.36335/VNJHM.2022(11).43-56 55 

Author contribution statement: Data sources from USGS, USDA: seek and opt by Anh 

Bui KV; STI calculation following Soil and Water Lab document, Biological and 

Environmental Engineering, Cornell University. SCS–CN following USDA. Validation, 

Visualization: Application of GIS tools and R software. Literature review, methodology, 

research design, conducting calculation, data analysis, writing–original draft, writing–review 

& editing: Anh Bui KV. 

Acknowledgements: The idea of hot spots in this study had been initially acquired at the 

University of Missouri, which was as a part of the research credits for research proposal in 

the Graduate Program at the School of Natural Resources, the University of Missouri. The 

ideology of SCS–CN and STI combination was initially mentioned in the research proposal 

in March 2019 – With gratitude for the support in research materials, insightful coursework 

and opportunities. 

Conflicts of Interest: The author declares that there is no conflict of interest. 

References 

1. Walter, M.F.; Steenhuis, T.S.; Haith, D.A. Nonpoint Source Pollution Control by 

Soil and Water Conservation Practices. Trans. Am. Soc. Agric. Eng. 1979, 22(4), 

0834–0840. 

2. Schneiderman, E.M. et al. Incorporating variable source area hydrology into a curve–

number–based watershed model. Hydrol. Process. 2007, 21, 25, 3420–3430. doi: 

10.1002/hyp.6556. 

3. Tomer, M.D.; Dosskey, M.G.; Burkart, M.R.; James, D.E.; Helmers, M.J.; 

Eisenhauer, D.E. Methods to prioritize placement of riparian buffers for improved 

water quality. Agrofor. Syst. 2009, 75(1), 17–25. doi: 10.1007/s10457-008-9134-5. 

4. Delgado, J.; Gantzer, C.; Sassenrath, G. Soil and water conservation A celebration 

of 75 years. 2020. 

5. Agnew, L.J. et al. Identifying hydrologically sensitive areas: Bridging the gap 

between science and application. J. Environ. Manage. 2006, 78(1), 63–76. doi: 

10.1016/j.jenvman.2005.04.021. 

6. Buchanan, B. et al. Estimating dominant runoff modes across the conterminous 

United States. Hydrol. Process. 2018, 32(26), 3881–3890. doi: 10.1002/hyp.13296. 

7. Easton, Z.M.; Fuka, D.R.; Walter, M.T.; Cowan, D.M.; Schneiderman, E.M.; 

Steenhuis, T.S. Re–conceptualizing the soil and water assessment tool (SWAT) 

model to predict runoff from variable source areas. J. Hydrol. 2008, 348(3–4), 279–

291. doi: 10.1016/j.jhydrol.2007.10.008. 

8. Lyon, S.W.; Walter, T.M.; Gerard–Marchant, P.; Steenhuis, T.S. Using a 

topographic index to distribute variable source area runoff predicted with the SCS 

curve–number equation. Hydrol. Process. 2004, 18(15), 2757–2771. doi: 

10.1002/hyp.1494. 

9. Todd Walter, M.; Steenhuis, T.S.; Mehta, V.K.; Thongs, D.; Zion, M.; 

Schneiderman, E. Refined conceptualization of TOPMODEL for shallow subsurface 

flows. Hydrol. Process. 2002, 16(10), 2041–2046. doi: 10.1002/hyp.5030. 

10. Walter, M.T.; Walter, M.F.; Brooks, E.S.; Steenhuis, T.S.; Boll, J.; Weiler, K. 

Hydrologically sensitive areas: Variable source area hydrology implications for 

water quality risk assessment. J. Soil Water Conserv. 2000, 55(3), 277–284. 

11. Garen, D.C.; Moore, D.S. Curve Number (CN) hydrology in Water Quality 

Modeling. JAWRA J. Am. Water Resour. Assoc. 2005, 3224(03127), 377–388. 

12. McClain, M.E. et al. Biogeochemical Hot Spots and Hot Moments at the Interface of 

Terrestrial and Aquatic Ecosystems. Ecosystems 2003, 6(4), 301–312. doi: 

10.1007/s10021-003-0161-9. 

13. USDA Conservation Engineering Division and NRCS. Urban Hydrology for Small. 



VN J. Hydrometeorol. 2022, 11, 43-56; doi:10.36335/VNJHM.2022(11).43-56 56 

Soil Conserv. No. Technical Release 55 (TR–55), 1986, pp. 164.  

14. Zhan, X.; Huang, M.L. ArcCN–Runoff: An ArcGIS tool for generating curve number 

and runoff maps. Environ. Model. Softw. 2004, 19(10), 875–879. doi: 

10.1016/j.envsoft.2004.03.001. 

15. Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of 

basin hydrology. Hydrol. Sci. Bull. 1979, 24(1), 43–69. doi: 

10.1080/02626667909491834. 

16. Dosskey, M.G.; Qiu, Z.; Helmers, M.J.; Eisenhauer, D.E. Improved indexes for 

targeting placement of buffers of Hortonian runoff. J. Soil Water Conserv. 2011, 

66(6), 362–372. doi:10.2489/jswc.66.6.362. 

17. Buchanan, B.P. et al. Evaluating topographic wetness indices across central New 

York agricultural landscapes. Hydrol. Earth Syst. Sci. 2014, 18(8), 3279–3299. doi: 

10.5194/hess-18-3279-2014. 

18. Qiu, Z.; Lyon, S.W.; Creveling, E. Defining a Topographic Index Threshold to 

Delineate Hydrologically Sensitive Areas for Water Resources Planning and 

Management. Water Resour. Manag. 2020, 34, 3675–3688. doi:10.1007/s11269-

020-02643-z. 

19. Anselin, L. Local Indicators of Spatial Association–LISA. Geogr. Anal. 1995, 27(2), 

93–115. doi: 10.1111/j.1538-4632.1995.tb00338.x. 

20. Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. 

Geogr. Anal. 1992, 24(3), 189–206. doi: 10.1111/j.1538-4632.1992.tb00261.x. 

21. Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues 

and an Application. Geogr. Anal. 1995, 27(4), 286–306. doi:10.1111/j.1538-

4632.1995.tb00912.x. 

22. Tobler, W. On the first law of geography: A reply. Ann. Assoc. Am. Geogr. 2004, 

94(2), 304–310. doi:10.1111/j.1467-8306.2004.09402009.x. 

 


