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Abstract: This study applicates the multi–physical method in ensemble Kalman filter 

determining error of WRF models to forecast the track and intensity of storm Damrey in 

2017. The study run three experiments with assimilation of satellite data to forecast 

Damrey in 2017 at the beginning 00 UTC and 12 UTC November 1st and 2nd: (1) 21 

ensemble members which are combinated from 11 physics options, no increase in error 

correlation (MP); (2) Using single set of physical model, 21 ensemble members, inflation 

factor λ = 6.5 (MI); (3) Using single set of physical model, 21 ensemble members without 

increase in error correlation (PF). Statistical results of track errors in MP test at the 24, 48, 

72–hour is 12–32% reduction in compared with tests MI and PF. For storm intensity, 

absolute error of Pmin in the MP test at 24 and 72–hour is decreased from 30–47% in 

compared to the other two tests. And the absolute error of Vmax in the MP test at all 

forecasting terms is 13–26% reduction in compared with tests MI and PF. Thus, the multi–

physical ensemble Kalman filter can forecast the track and intensity of storms affecting 

Vietnam. 
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____________________________________________________________________ 

1. Introduction 

Basically, data assimilation is a process which the observed data and a background 

guess field are statistically combined to obtain the best possible initial conditions for the 

numerical model [1–2]. The goal of assimilation is to find the best possible analysis field 

for the model input. However, this work depends heavily on the quality of the observed 

data (related to the error of the observed data) and the quality of the model’s background 

guess data (related to the model’s intrinsic error). The error related to the monitoring data 

belongs to the problem of quality control of professional monitoring; while the background 

field error is related to the model’s internal errors – errors caused mainly by physical 

processes that are not fully understood [2–4]. 

Currently, the model error handling techniques in modern data assimilation algorithms 

include multiplicative inflation techniques [5], additive increasing techniques [6], or 
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systematic error correction method [7–8], multiple physics technique [9]. The multiple 

physics technique is the method of using different combinations of physical 

parameterization diagrams in the WRF model to calculate the parameters related to the 

error of the model in the ensemble Kalman filter [9]. This method is based on the 

assumption that the source of the model error is mainly due to the incomplete 

representation of physical processes [2–3]. The multiple physics has been applied in some 

previous studies [3, 9–11], and show significant improvements in track and intensity storm 

prediction results compared with other methods, such as the multiplicative inflation [12] 

and compared with the case where the model error is zero [3, 9–11]. Accordingly, in the 

study [9], it was shown that the multiplicative inflation factor 6.5 is the best compared to 

the multiplicative inflation factor that varies from 1.0 to 6.5, and the multiple physics 

technique is good choice for short–term forecasting problem, in addition, the study also 

shows that the optimal number of combinations in combination prediction ranges from 21–

24 components which are different combinations of physical parameterization schemes in 

the WRF model. Therefore, in this study, we will use the multiplicative inflation technique 

and consider the model to be perfect to compare with the multiple physics’ technique, and 

the number of ensemble components is 21 components for a forecasting session [9]. 

In addition, storm Damrey in 2017 was a strong storm that directly hit Ninh Hoa–

Khanh Hoa At 6:30 am on 4 November 2017 with wind strength increased by 1 level to 

level 13, level 15, 16 [13]. At 10 o’clock on the same day, the center of the storm was on 

the mainland of Dak Lak–Lam Dong, the wind strength near the center of the storm 

decreased to level 10–11, level 13. After that, the storm weakened into a tropical 

depression. By noon on November 5, the center of the tropical depression in the southern 

region of Cambodia, the wind dropped below 40 km/h. By November 8, at least 106 people 

had been killed in Vietnam by the storm, with 197 others injured and 25 missing. It is 

reported that more than 116,000 homes were destroyed after flooded. The United Nations 

Children’s Fund (UNICEF) estimates that at least four million people have been directly 

impacted by the storm and need support. Nha Trang beach resort was one of the hardest hit 

areas, 30,000 residents and tourists had to evacuate the area. A number of previous studies 

used storm Damrey as in the initial study of vortex chemistry by Nguyen Binh Phong and 

Associates 2020 to predict the intensity of storm Damrey during the landfall stage [14]. 

Research results show that storm intensity with vortex initial is improved more clearly in 

the absence of vortex initialization. Another study related to the forecast of the storm 

Damrey’s trajectory by the method of correcting the forecast of the storm’s trajectory from 

the product of the combined forecasting system through the selection of the optimal 

composite component of the author Tran Quang Nang and Tran Tan Tien 2020 [15]. The 

results show that the correction method can only improve the error of trajectory prediction 

in short–term forecasting terms. Another study by Kulaya Keawsang–in and colleagues 

2021 examines the sensitivity of different physical schemes to simulate Typhoon Damrey. 

The results show that the Belts–Millers–Janjic convection diagram and the WSM6 

microphysics diagrams are suitable in the simulation of storm Damrey [16]. Therefore, in 

this study, we apply multiphysics technique in combinatorial Kalman filter to determine the 

error of WRF model predicting the trajectory and intensity of storm Damrey 2017. 

2. Methods and data 

2.1. Ensemble Kalman Filter algorithm 

The idea of the LETKF algorithm is to use the background ensemble matrix as a 

transformation operator from the model space spanned by the grid points within a selected 

local patch to the ensemble space spanned by the ensemble members, and perform the 

analysis in this ensemble space at each grid point. For a quick summary of the LETKF 



VN J. Hydrometeorol. 2022, 11, 57-71; doi:10.36335/VNJHM.2022(11).57-71                           59 

algorithm, assume that a background ensemble b(i){ i 1, 2..., k}=x  are given, where k is the 

number of ensemble members (assuming that we are doing analysis at one instant of time, 

so no time index is written explicitly). Following [17], an ensemble means b
x  and an 

ensemble perturbation matrix Xb are defined respectively as: 

   
=

=
k

i

ibb

k 1

)(1
xx ; bibb

xxX −= )(     (1) 

Let wXxx
bb += , where w is a local vector in the ensemble space, the local cost 

function to be minimized in the ensemble space is given by: 
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where ][ wXx
bbJ +  is the cost function in the model space. If one defines the null 

space of Xb as N = {v | Xbv = 0}, then it is easy to see that the cost function )(wJ


is 

composed of two parts: one containing the component of w in N (the first term in Eq. 2), 

and the second depending on the component of w that is orthogonal to N. By requiring that 

the mean analysis state 
a

w  is orthogonal to N such that the cost function )(wJ


is 

minimized, the mean analysis state and its corresponding analysis error covariance matrix 

in the ensemble space can be found as: 
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where )( )( bibb H xxY −  is the ensemble matrix of background perturbations valid at 

the observation locations, and R is the observational error covariance matrix. By noting that 

the analysis error covariance matrix a
P  in the model space and a

P


 in the ensemble space 

have a simple connection of 
Tbaba )(XPXP


= , the analysis ensemble perturbation matrix 

a
X can be chosen as follows: 

   
2/1])1[( aba k PXX
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The analysis ensemble xa is finally obtained as:     

   }])1[({ 2/1)( aabbia k PwXxx


−++=     (6) 

Detailed handling of more general nonlinear and synchronous observations in LETKF 

can be found in [17]. It should be mentioned that the above formation is only valid in the 

absence of model errors. To take into account the model errors, [17] suggested that a 

multiplicative factor should be introduced in Eq. (4) (specifically, the first factor on the rhs 

bracket in Eq. 4). Although one could also use the additive inflation, this study focuses only 

on the multiplicative inflation for the ease of implementation and comparison.  

2.2. Models and Study area 

Using WRF model version V3.9.1 with 31 levels (Sigma) in the vertical with the highest-

pressure level (the upper boundary of the model) is 10hPa [18]. The WRF model is selected 

with two nested computational domains using the Mercator projection. The mesh area 

designed for the simulation test of Damrey storm is a nested grid consisting of 2 regions with 

horizontal resolutions of 36 km and 12 km respectively, grid domain 1 consists of 151×151 

grid points and grid domain 2 consists of 151×151 grid points with the domain center. 

immobility 11.2°N & 112.3°E (Figure 2). 
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Figure 1. The study area. 

2.2. Experiment descriptions 

In this study, the authors tested the forecast for typhoon Damrey 2017 with a term of 3 

days 2017 at the beginning 00 UTC and 12 UTC November 1st and 2nd with experiments 

are listed in table 1. All the above tests are assimilated satellite wind data by the ensemble 

Kalman filter. 

Table 1. List of experiments with the WRF–LETKF configuration. 

Experiments Description Boundary Condition 

MP The Combination of 11 options physical 

model, 21 ensemble members, no increase in 

error correlation 

To ensure that each member has its 

own lateral boundary condition 

consistent with its updated nalysis, 

the WRFDA boundary routine is 

used to generate boundaries for each 

ensemble member after 

the ensemble analysis step is 

finished for every cycle. 

MI Using a set of physical model, 21 ensemble 

members, inflation factor λ = 6.5 

PF Using a set of physical model, 21 ensemble 

members without increase in error correlation 

In the first experiment (MP), 21 sets of physical models (Table 3) consisted of the set 

of combinatorial components of the parameterization schemes in Table 2. In the second 

experiment (MI), one the set of specific physical models in the WRF model include (a) the 

WSM3 microphysics diagram, (b) the radiation rapid transmission scheme (RRTM) for 

both long and short-wave radiation, and (c) BMJ convective parameterization scheme 

(component 11) is applied to all combinatorial components with a multiplier = 6.5 added in 

the variable error correlation matrix change Pa in expression (4). However, this coefficient 

λ does not change in all cycles of the experiment so that the effectiveness of the MI method 

in handling model error can be compared with that of the MP method. In the third 

experiment (PF), we consider the model to be perfect with the background error unchanged 

over all the running cycles of the experiment. Similar to the multiplication method, this 



VN J. Hydrometeorol. 2022, 11, 57-71; doi:10.36335/VNJHM.2022(11).57-71                           61 

experiment uses the same set of physical models as in the MI experiment so that the 

effectiveness of the method in handling model errors can be compared with the MP and MI 

tests. 
 

Table 2. Options table of physical parameterization schemes in WRF model [19]. 

Schemes Symbol Options 

Longwave Radiation ra_lw_physics  1. RRTM scheme 

Shortwave Radiation ra_sw_physics 
1. Dudhia scheme 

2. Goddard shortwave 

Microphysics mp_physics 

1. Kessler scheme 

2. Lin et al. scheme 

3. WSM 3–class simple ice scheme 

4. WSM 5–class scheme 

5. Ferrier (new Eta) microphysics 

6. WSM 6–class graupel scheme 

Cumulus 

Parameterization 
cu_physics 

1. Kain–Fritsh scheme 

2. Betts–Miller–Janjic scheme 

Table 3. Encryption of multi–physical ensembles from multiple physics options in WRF model [19]. 

Complex Ra_lw_ physics Ra_sw_ physics mp_ physics cu_physics 

001 1 2 1 1 

002 1 1 1 2 

003 1 2 1 2 

004 1 1 2 1 

005 1 2 2 1 

006 1 1 2 2 

007 1 2 2 2 

008 1 1 3 1 

009 1 2 3 1 

010 1 1 3 2 

011 1 2 3 2 

012 1 1 4 1 

013 1 2 4 1 

014 1 1 4 2 

015 1 2 4 2 

016 1 1 5 1 

017 1 2 5 1 

018 1 1 5 2 

019 1 2 5 2 

020 1 1 6 1 

021 1 2 6 1 

2.3. Data 

The initial and boundary conditions used NCEP/NCAR (NCEP–The National Center 

for Environmental Prediction/NCAR–The National Center for Atmospheric Research) GFS 

forecast data with a horizontal resolution of 0.5×0.5 degrees and grib2 format. GFS data 

were obtained from the website: https://www.ncdc.noaa.gov/data-access/model-data/model-

datasets/global-forcast-system-gfs. The best track data of storm position and intensity are 

collected from the website: https://www.metoc.navy.mil/jtwc/jtwc.html?western-pacific. 

Wind monitoring data from satellites is a particularly important data source for 

forecasting models running around the world with global coverage and data collection time 

within 3–6 hours. depending on the characteristics of each satellite. Satellite wind data 

allows to know the dynamic state of the atmosphere, contributing to the information of the 

initial field of the forecast model by data assimilation. Currently, satellite wind data are 
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preprocessed by the University of Wisconsin satellite atmospheric motion vector CIMSS–

AMV (Cooperative Institute for Meteorological Satellite Studies – University of Wisconsin 

satellite atmospheric motion vector CIMSS–AMV) in the same time period. selected. 

Several studies with CIMSS–AMV data have shown that this data can help improve the 

predictive quality of various medium–sized systems. The advantage of the CIMSS–AMV 

data is that the error has been tested for high quality and is determined by a recursive 

filtering algorithm. Each metric is checked for the best fit with the surrounding data using 

quality index techniques. Most of the CIMSS–AMV data is distributed in different regions 

and is currently stored in a variety of formats including ASCII and/or BUFR. In this study, 

satellite wind data were collected over the Indian, Northwest Pacific region (Figure 2) and 

downloaded from the website http://tropic.ssec.wisc.edu in ASCII format. 

 

Figure 2. Area is covered by satellite wind data in this study (source: http://tropic.ssec.wisc.edu). 

2.4. Evaluation methods 

2.4.1. Absolute mean method 

According to [20], MAE error is used to evaluate the predictions of continuous 

atmospheric variables. Therefore, MAE is applied as an index to evaluate the error of storm 

intensity (minimum sea level pressure at the center – PMIN and maximum wind speed near 

the center of VMAX). With MAE–mean absolute error is calculated by the formula: 

                MAE = 
1

𝑁
∑ |𝐹𝑖 −𝑂𝑖|
𝑁
𝑖=1                     (7) 

where MAE is the mean absolute error; Fi is the predicted value; Oi is the observed 

value; and N is the length of the data series. 

2.4.1. Storm center distance method 

Track error calculated by formula (8). 

PE = Re ∗ arccos⁡[sin(α1) ∗ sin(α2) + cos(α1) ∗ cos⁡(α2) ∗ cos⁡(β1 − β2)]   (8) 

where Re is the radius of the earth (6378.16 km); α1, α2 is the latitude of the actual of 

the storm and the center of the storm predicted by the model (in radians); β1, β2 is the 

longitude of the actual center of the storm and the predicted center of the storm (in radians). 

The distance mean error is calculated as follows: 
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MPEj =
∑ PEi,j
n
i=1

n
        (9) 

where PE is the distance error of each forecasting case; n is the number of test cases; j 

is the forecast term. 

3. Results and discursion  

3.1. Stream simulation 

Basically, when large–scale circulations change and control the storm's active area, it 

will directly affect the direction of the storm's movement. In the case of cyclone Damrey, 

large–scale circulation dominated the storm's area of activity, including the northwest 

Pacific subtropical high and cold high at north of the storm. For the purpose of 

investigating the applicability of multiphysics techniques in determining the model error in 

ensemble Kalman filter to prediction storm trajectory, the study compares the stream field 

in the MP, MI and PF tests in levels 850, 700, and 500 hPa at 12h00 UTC on 3rd November 

2017 is the time when the storm begins to make landfall in the forecast session that begins 

at 12h00 UTC on 1st November 2017 (Figure 3). 

    

    

    
Synop 

[https://www.tmd.go.th/en/weather_

map.php] 

MP MI PF 

 

Figure 3. The stream map of 850 hPa (top), 700 hPa (middle) and 500 (bottom) hPa levels. 

At 850 hPa and 700 hPa, the MP test simulates a cold high that mixes southward and 

extends to the east more than the cold high which is simulated in the MI and PF tests. In 

particular, at 700 hPa and north of the storm there is a fairly barometric saddle in the synop 

map, and this barometric saddle is also simulated in the MP test, while the MI and PF tests 
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don't simulate this barometric saddle (Figure 3). At 500 hPa, the MP test simulates the 

northwest Pacific subtropical high more westward than the MI and PF trials, and has a similar 

morphology to the synop map (Figure 3). The simulation results show that the direction of the 

storm in the MP test is closer to the real trajectory than the other two tests [11]. 

Thus, the multiphysics technique seems to have some impact in the flowline simulation 

at the levels of 850, 700 and 500 hPa. This result is a consequence of previous work that 

demonstrated that the volumetric least squares error of the multiphysics technique is 

smaller than the volumetric least squares error of the multiplicative inflation technique. 

Meaning predicted error of U, V and T in the MP test improved markedly compared with 

the MI test [9]. As a result, the forecast results of the trajectory and intensity of storm 

Damrey in the MP test are also improved relative to the MI and PF tests. In the next 

section, the paper will examine the ability of the tests to predict the trajectory and intensity 

of storms. 

3.2. Forecasting intensity and track 

3.2.1. Track storm 

Figure 4 shows that the true trajectory of Typhoon Damrey is moving to the west (Figure 

4) and made landfall around 12h00 UTC on 3rd November 2017. Meanwhile, the ensemble 

components in the MP, MI and PF tests all predict the trajectory of storm Damrey to move to 

the northwest. At 12h00 UTC on 4th November 2017, the storm moved on the sea in MP, MI 

and PF tests (Figures 4a–4c). In addition, a few ensemble components of the MP test 

predicted the location of the storm Damrey's landfall, but it is quite far from the actual 

location. On the other hand, the dispersion of composite components in the MP test is wider 

than that of the composite components in the MI and PF tests. This result is similar to the 

results of the previous study when concluding that the composite dispersion in MP was wider 

than the composite dispersion in the MI test [9, 11]. 

Figure 4d is the ensemble mean trajectory in the MP, MI and PF tests, the observed 

trajectory in black and the trajectory of the GFS data (green). From 00–hour to 30–hour 

forecast period, it shows that the storm trajectory is not much different between the 3 tests 

MP, MI and PF, after the 30–hour forecast period to 72 hours, the forecast trajectory of the 

tests is in the north of the true trajectory, where the predicted trajectory of the MP test is 

closer to the true orbit than the MI and PF tests. And the Damrey orbit in the GFS data is 

located south of the true trajectory. 

The forecast results of storm Damrey's trajectory in the tests are consistent with the 

results of the stream simulations in all three tests (section 3.1). Specifically at 12h00 UTC on 

3 November 2017 At 850 hPa and 700 hPa, the MP test simulates a cold high which moves 

down to the south and extends to the east more than with cold high simulated in the MI and 

PF tests. So the cold high in the MP test limited the direction of the storm's movement to the 

north. In addition, at 500 hPa, the MP test also simulated the northwest Pacific subtropical 

high developing to the west, thereby also limiting the northward movement of the storm 

(figure 4d). However, the speed of storm movement in all 3 trials was slower than observed 

and GFS data. And to quantify the accuracy of each trial’s hurricane trajectory prediction, the 

study calculated the trajectory prediction error of the trials. 

From the graph showing the trajectory prediction error of the MP, MI and PF tests 

together with the trajectory prediction error of the GFS data (Figure 5), it shows that the 

trajectory prediction error of the MP test is lower than the forecast error of the storm 

trajectory of the MI and PF tests at most forecasting periods. Meanwhile, the forecast error 

of storm trajectory in the MP test did not improve much compared with the track forecast 

error of the GFS data. This result is also clearly seen in the statistics of the orbital forecast 

error of the 3 forecasting sessions (Figure 6). 
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To evaluate the effectiveness of the MP test in predicting the trajectory, we calculated 

the relative trajectory prediction error between the MI and MP tests, and between the PF 

and MP tests (table 4). The relative trajectory prediction error results show that the orbital 

error in the MP test improves from 9% to 32% compared to the trajectory prediction error 

in the MI test, and improves from 4% to 30% compared to the trajectory prediction error in 

the PF test at most forecasting terms. This result may be due to the multiphysics technique 

(determining the error of the model due to the incomplete understanding of physical 

processes [4, 9] has partly corrected the error of the model. So that the received background 

field has a significantly reduced error, and leads to a more accurate analysis field for the 

input of the model than the multiplicative inflation technique and considers the model 

perfect. 

 
Figure 4. The predicted trajectory of Hurricane Damrey in the MP test (a), the MI test (b) and the 

PF test (c); observed (orange), composite components are thin lines; Figure d is the observed 

trajectory, the combined average trajectory of the test MP, MI, PF and GFS data. The forecast start 

time is 12 o’clock on November 1, 2017. 

 
Figure 5. The ensemble means track errors in the MP, MI and PF test. With the forecast session 

starting at 12h00 UTC on 1st November 2017. 
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Figure 6. Average track error of 3 forecasting sessions (00 UTC on 1 st November 2017, 12UTC 

on 1st November 2017 and 00 UTC on 2 nd November 2017) MP, MI, PF test and GFS data. 

Table 4. Relative error of MI and PF relative to MP in trajectory simulation, Pmin and Vmax. 

Periods 
Track (km) Pmin (hPa) Vmax (ms–1) 

MI–MP PF–MP MI–MP PF–MP MI–MP PF–MP 

0 0.00 0.00 0.00 0.00 0.00 0.00 

6 –0.23 0.05 0.08 0.03 –0.03 0.14 

12 0.08 0.04 0.08 0.10 –0.03 0.08 

18 0.09 0.12 –0.13 –0.19 –0.06 –0.13 

24 0.18 0.13 0.31 0.27 0.13 0.18 

30 0.32 0.28 –0.30 –0.32 0.49 0.49 

36 0.32 0.28 –0.16 –0.17 0.36 0.35 

42 0.32 0.28 0.68 0.62 0.58 0.52 

48 0.32 0.28 –1.56 –1.32 0.27 0.18 

54 0.34 0.30 –0.05 –0.05 0.07 0.08 

60 0.31 0.27 0.25 0.18 0.30 0.29 

66 0.31 0.26 0.38 0.35 0.24 0.19 

72 0.26 0.21 0.47 0.43 0.26 0.21 

3.2.2. Damrey storm intensity 

Storm intensity is usually expressed through minimum pressure (Pmin) and maximum 

wind speed (Vmax). The Pmin and Vmax values used in this section are the mean of the 21 

ensemble members in each trial. 

a) The minimum pressure 

The observed Pmin data in Figure 7 shows that the storm gradually became stronger 

from 12h00 UTC on 1st November 2017 and the strongest storm at 12h00 UTC on 3rd 

November 2017 (Figure 7) – expressed through the value of Pmin down to the lowest. After 

that, the Pmin value increases gradually, meaning the storm is getting weaker. The MP, MI 

and PF tests all predict the Pmin process which has a decreasing trend similar to the 

observed Pmin value. However, after 12h00 UTC on 3rd November 2017, these tests did not 

predict the changing trend of the Pmin process as observed (Figure 7). Particularly, the Pmin 

of GFS data has a variable similar to the observed Pmin, but value Pmin is much larger than 

the observed Pmin value, or in other words, the storm intensity in the GFS data is weaker 

than in reality. At 12h00 on 3rd November 2017 is also the time when the storm makes 

landfall (according to monitoring data), but in the tests, Pmin decreased little or not, so the 

storm still existed at sea. This result is statistically consistent, when the storm makes 
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landfall, the intensity of the storm decreases. Meaning the Pmin value increases more than 

on the sea surface. 
The Pmin absolute error results will indicate the effectiveness of each trial in predicting 

Pmin. Figure 8 shows that the Pmin absolute error in the MP test did not improve much 

compared to the MI and PF tests at the 60–hour advance term, while at the 66–hour and 72–

hour forecast period, the MP absolute error improved significantly. Statistically, all 3 

forecasting sessions showed that Pmin prediction results in the MP test were better than the 

MI and PF tests at most of the forecasting term (Figure 9). 

In addition, similar to the evaluation of the predictability of the Damrey storm 

trajectory of the multiphysics technique in determining the error of the model in the 

ensemble Kalman filter, we also calculate the relative error Pmin between the tests. The 

results in Table 4 show that, at the 24–hour forecast period and the 2–day prediction term, 

the MP test improves the Pmin error by 18% to 47% compared with the MI and PF tests. 

This result may be due to the effect of the multiphysics technique in forecasting 

meteorological variables (U, V and T) which is significantly improved compared with the 

techniques in the MI test [9] and PF test. On the other hand, the Pmin statistical error results 

also show that the MP test significantly improves the Pmin error compared with the GFS 

data (Figure 9) at most of the forecasting term. However, at the time when the storm was 

about to make landfall, the Pmin error in the MP test did not improve compared to the 

initialization vortex method [14]. In the next section, the article analyzes the predictive 

ability of Vmax of multiphysics techniques. 

 

Figure 7. The mean Pmin process variable in the trials. With the forecast start time at 12h00 UTC on 

1st November 2017. 

 

Figure 8. Pmin Absolute error (hPa) in the MP, MI, PF test and GFS data. Forecast at 12h00 UTC 

on 1st November 2017. 
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Figure 9. Average absolute error Pmin in forecast sessions (00 UTC on 11/01/2017, 12 hours UTC 

on 11/01/2017, 00 UTC on 11/2/2017) in MP, MI, PF tests and GFS data. 

b) Maximum wind speed 

The maximum wind speed (Vmax) is the second factor representing the intensity of any 

storm. The change in Vmax during the storm’s activity also indicates that the storm is 

weakening or strengthening. Therefore, the Vmax variable is a visual image describing the 

strength or weakening of the storm. Figure 10 is the Vmax variable of storm Damrey with 

the forecast time at 12h00 UTC on 1st November 2017. Similar to the Pmin variable, the 

observed Vmax data shows that the storm is getting stronger from 12h00 UTC on 1st 

November 2017 and the strongest at 12h00 on 3rd November 2017 – this is shown by the 

value of Vmax reaching the minimum at this time. After that, the storm gradually weakened 

when it made landfall, due to the influence of surface friction (Figure 8). Meanwhile, the 

MP, MI and PF tests all predict that the Vmax process tends to increase similarly to the 

observed Vmax value from 1200h UTC on 1st November 2017 to 12h00 UTC on 3rd 

November 2017. After 12h00 on 3rd November 2017, the variable Vmax in the tests is 

different from the observed Vmax variable (Figure 10). Particularly, the Vmax variable of 

GFS has a variable similar to the observed Vmax, but Vmax value is much smaller than the 

observed Vmax value or in other words, the storm intensity in the GFS data is weaker than 

in reality. This is consistent with previous studies that simulate the Vmax magnitude of 

GFS data biased lower than reality. In addition, at 12h00 on 3rd November 2017 is also the 

time when the storm makes landfall (according to observational data – figure 10, figure 4 – 

trajectory), but in the tests, Vmax decreased slightly, so the storm still exists at sea. This 

result is statistically consistent, when the storm makes landfall, the intensity of the storm 

decreases sharply – the Vmax value decreases more than on the sea surface. The results of 

Vmax absolute error show the effectiveness of each test in predicting Vmax. Figure 11 shows 

that the Vmax absolute error of the MP test is significantly improved compared with the MI 

and PF tests at most of the forecasting terms. Statistically, all 3 forecasting sessions showed 

that Vmax prediction results in MP test were better than MI and PF tests at most of the 

forecast periods except for the 24 hours period (Figure 11). 

In addition, we calculate the Vmax relative error betweenthe tests. The results shown in 

Table 4 show that the Vmax error value in the MP test is improved by 6% to 58% 

compared tothe Vmax error in the MI and PF test. This result may be due to the effect ofthe 

multiphysics technique in forecasting meteorological variables (U, V and T) which is 

significantly improved compared with the techniques in the MI test [9] and PF test. In 

addition, the statistical Vmax error also showsthat the MP test significantly improves the 

Vmax error compared with the GFSdata (Figure 12). However, at the time when the storm 

was about to makelandfall, the Vmax error in the MP test did not improve compared to 

theinitialization method [14]. Thus, for intensity forecasting of Damrey storm, multiphysics 
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techniques show certain advantages – forecasting storm intensityis more effective than 

other techniques. 

 

Figure 10. Variable Vmax means in the trials. With forecast start time at 12h00 UTC on 1st 

November 2017. 

 

Figure 11. Absolute error Vmax (m/s) in the MP, MI, PF and GFS tests. Forecast at 12h00 UTC on 

1st November 2017. 

 

Figure 12. Average absolute error Vmax in forecasting sessions (00 UTC on 11/01/2017, 12 hours 

UTC on 11/01/2017, 00 UTC on 11/2/2017) in MP, MI tests, PF and GFS. 
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4. Conclusion 

In this study, we applied multi–body and multiplier technique and considered the model 

to be perfect to perform 3 sessions of forecasting the trajectory and intensity of Typhoon 

Damrey 2017 with 3–day forecast period with input field. is the analysis data which is 

generated from the Kalman filter combination assimilation of wind data observed from 

satellites. The results of the comparative analysis and comparison between the above methods 

show that: 

Regarding the trajectory prediction, the MP test (multiphysics technique) showed an 

improved trajectory error of 9% to 32% in compared with the trajectory prediction error in 

the MI test, and an improvement of 4% up to 30% of the orbital prediction error in the PF test 

at most forecasting terms. These results are the consequence of correcting the error of the 

model because the object processes are not fully represented by the multibody technique. 

With a specific case at the 12h00 session on 1st November 2017, the multi–physical 

techniques (MP test) simulation results of the general atmospheric circulation – Cold 

continental high pressure and subtropical high pressure. The north–west Pacific temperature 

is quite similar to the synaptic topology, so that the forecasted storm trajectory is closer to the 

true trajectory than the other techniques (MI and PF). However, at the stage when the storm 

was about to make landfall, the multiphysics technique did not improve the orbital error 

compared with the GFS data. This may be due to the storm’s interaction with land 

(topography), so the model error at this point does not seem to be simply due to the physical 

processes in the model not being fully represented enough. Therefore, the study proposes for 

the next research direction of applying multiphysics technique in combinational Kalman filter 

to determine model error for simple cases of storms moving at sea and for hurricanes. landed 

on land. From there, there is a plan to overcome the error of the trajectory for the case of 

storms that are about to land on the mainland. 

In predicting the intensity (Pmin and Vmax), the multiphysics technique also shows the 

certain advantages over the other two techniques at each forecasting term. Specifically, for 

Pmin, at the 24-hour forecast period and the 2 days larger forecast period, the MP test 

improved 18% to 47% of the Pmin error in compared with the MI and PF tests. For Vmax, the 

Vmax error value in the MP test improved by 6% to 58% in compared with the Vmax error in 

the MI and PF test. These results may be due to the effect of the multiphysics technique in 

predicting meteorological variables (U, V and T) which is significantly improved compared 

with the multiplier techniques in the MI test [9] and PF. In compared with using GFS data, 

the multiphysics technique significantly improved the forecast error of storm intensity (Figure 

14 and Figure 15). Especially when the storm was about to make landfall, the strongest storm 

was at 12h00 UTC on 3rd November 2017, the MP test predicted the storm’s value as well as 

the strengthening trend. In terms of errors, Pmin and Vmax are improved compared with GFS 

data, MI and PF tests, but cannot be improved compared to Pmin and Vmax prediction results in 

the initial study of vortex chemistry [14]. Therefore, the research direction that applies both 

the multiphysics method and the initial application of vortex chemistry to predict the intensity 

of storms affecting Vietnam is the next research direction of the authors’ group. 
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