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Abstract: In this study, a logistic regression model is developed to forecast tropical storm 

(TS) genesis in the Vietnam East Sea from 2012 to 2019. The model incorporates seven 

potential predictors including dynamic and thermodynamic parameters at formation time 

retrieved from the WRF-LETKF outputs. After rigorous testing, six predictors are selected, 

excluding minimum sea-level pressure. In a broader context, the logistic regression model 

performs promisingly, generating forecast probabilities that enhance the accuracy of TS 

genesis predictions, particularly in early forecast cycles. The model’s regression coefficients 

and forecast outcomes align well with test dataset results, affirming its stability and validity. 

As a result, the forecast probability from this model can be effectively employed as a 

probabilistic forecast value for predicting TS genesis status. 

Keywords: Tropical cyclogenesis; WRF-LETKF; Ensemble prediction system; Logistic 

regression. 
 

1. Introduction 

Tropical storm (TS) genesis forecasting is recognized as one of the most challenging 

aspects of numerical weather prediction (NWP). The ability to accurately predict the 

formation of TSs is crucial for effectively managing and mitigating associated risks. With 

the significant advancements in computational capabilities, NWP models have started to 

assume a prominent role in forecasting TS genesis and tropical cyclone (TC) as a whole. 

Consequently, numerous studies have been undertaken to evaluate the reliability and 

accuracy of predictions regarding the formation and development of TCs to TS intensity as 

indicated by these models [1–3]. 

Beyond the utilization of a single-model deterministic forecasts, the adoption of 

ensemble forecasts for TS genesis prediction has gained popularity, showing superior 

predictive capabilities. Ensemble prediction systems are designed to address uncertainteis in 

initial condiitons and imperfections in model formulation, with the goal of providing a range 

of potential future atmospheric scenarios [4]. Despite the substantial volume of data required 

for processing, ensemble forecasting has demonstrated its effectiveness in enhancing the 

accuracy of tropical cyclones [5]. In a study assessing TS genesis from tropical cloud clusters 

using two global ensemble prediction systems, ECMWF-EPS and UKMO-EPS, conducted 

over the years 2018 to 2020 in the Northwestern Pacific, Northeastern Pacific, and Northern 

Atlantic regions. The author [6] reported relatively good forecasting skills. They found that 

the quality of probabilistic forecasts could be further enhanced by combining predictions 

from all multi-model ensemble members. Additionally, the authors observed that in cases 
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where on member did not provide an accurate prediction, favorable conditions for TC genesis 

were often present. This underscors the utility and value of ensemble forecasting systems in 

improving the prediction of TS genesis. The Local Ensemble Transform Kalman Filter 

(LETKF) scheme, pioneered at the University of Maryland [7, 8], has found widespread 

application in various numerical models, with notable use in the Weather Research and 

Forecasting (WRF) model [9–11]. Research by [9] highlighed the LETKF’s exceptional 

utility in managing highly diverse data, such as satellite observations. The incorporation of 

multi-physics ensemble prediction of this scheme has demonstrated ist effectiveness in 

predicting the genesis of TC Wutip (2013). Building upon their case study, this study delves 

further into examining the efficacy of the WRF-LETKF when assimialting augmented 

observations in forecasting the likelihood of 45 TCs that occurred between 2012 and 2019 

over the Vietnam East Sea. 

Along with dynamical prediction model, numerous studies have delved into the 

application of statistical models for forecasting the development of TSs [12–15]. A common 

thread across these diverse researches is the incorporation of seasonal or climatological 

factors of various scales as predictors in their statistical models. A recent approach is 

applying these statistical model to the products of pre-existing NWP systems, so called the 

dynamical-probabilistic forecast models [16]. However, relatively few studies have 

concentrated on short-term events with lead times of up to 5 days. One of the most frequently 

employed techniques for probability prediction is the logistic regression model [17]. This 

model is capable of forecasting and discerning the likelihood of an event occurring, 

particularly the genesis of TCs [18].  

Building upon the foundation of existing scientific knowledge, this study offers a 

dynamical-probabilistic forecast model to predict TS genesis over the Vietnam East Sea, 

expanding to ensemble forecast. The construction involves results from the WRF-LETKF 

forecasts and logistic regression model, with a specific focus on the likelihood of TS genesis 

from predefined events. This investigation sheds light on vital insights into the predicted TS 

genesis using products from ensemble prediction system. The subsequent sections of this 

paper are organized as follows: Section 2 outlines the experimental design. Section 3 provides 

a brief discussion of the results concerning the direct outputs to predict TC genesis various 

forecast cycles. Section 4 selects the associated predictors and section 5 constructs the 

probabilistic prediction model. Finally, Section 6 offers a summary and engages in further 

discussion. 

2. Experiment settings 

2.1. Ensemble prediction system  

The Local Ensemble Transform Kalman Filter (LETKF) algorithm are applied to the non-

hydrostatic version of the WRF model version 3.9.1 to create the ensemble-based data 

assimilation system (hereafter, WRF-LETKF) with variational data assimilation scheme 3DVAR 

at cold-start. Additionally, the algorithm’s construction and its application in the case study of 

Wutip (2013) were thoroughly elucidated in the study of [19]. 

The model employs an ensemble size of 21 members, generating perturbations based on the 

atmospheric state from the previous cycle. These perturbations are integrated into the global 

deterministic analysis using, maintain uniform scaling with an inflation factor of 1,1 for 

assimilated variables to enhance the influence of ensemble noise. The multi-physic approach 

optimizes spread without requiring a larger number of members and combines various 

parameterization schemes. These schemes include 2 convective schemes, 3 boundary-layer 

schemes, 3 microphysics schemes, and 2 shortwave-longwave radiation schemes, resulting in a 

total of 36 potential combinations. From these, 21 combinations were selected for operational 
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purposes (refer to Table 1 [19]), considering model stability and minimizing internal conflicts 

during implementation. 

The WRF model was configured with a domain that is large enough to cover the entire 

Vietnam East Sea and the surrounding waters of the Northwestern Pacific, an area with 

coordinates [95E - 145E; 0 - 30N] (Figure 1). The domain has a spatial resolution of 27 km 

and includes 31 vertical levels and the forecast lead time is 5 days (120-hr forecasts) within a 

hourly interval. 

 

Figure 1. Illustration of the positions where 45 TCs formed (a) and developed into tropical storms (b) in 

the Vietnam East Sea during the period from 2012 to 2019 retrieved from IBTraCS best-track. 

2.2. Data collection and TC tracking 

The study relies on the International Best Track Archive for Climate Stewardship (IBTraCS) 

[20] to serve as the benchmark for TD formation ensemble prediction and for statistically 

verifying subsequent TS development. The investigation focuses exclusively on TCs in their 

early stages within the Vietnam East Sea. If TC maximum 10-m sustained wind speed reaches 

20 kt (TD intensity), the location and timing of the cyclone in best-track is recorded as TD genesis 

(Figure 1a). Similarly, when the TC’s intensity reaches or exceeds 34 kt (TS), it is considered as 

a development case, indicating that it has transitioned into a tropical storm (Figure 1b). The initial 

and boundary conditions for the numerical experiments were derived from the NCEP GFS 

analysis provided every 3-hr at 0.5 × 0.5 horizontal resolutions.  

In this study, the forecasted timing and location of each TCs from TD formation to TS stage 

is important, as we examine the state of the atmosphere at the genesis of TD and its subsequent 

potential to reach TS intensity. We employ a straightforward yet essential tracking algorithm, 

with a specific emphasis on their early development stages over the ocean. The tracking 

algorithm follows the work made by [19]. The criteria used for selecting cyclones that develop 

into TSs involve local minimum sea-level pressure (Pmin) having adjacent local maximum low-

level vorticity (low) and minimum geopotential height at 700 hPa while scanning every grid point 

for each lead time of every forecast. All the extrema are required to exhibit at least 2 closed 

contours of 2 hPa; 10-5 s-1; and 4 dams, respectively, to avoid noise. When TC’s maximum 10-

meter wind speed (Vmax) nearest to the Pmin location exceeds 20 kt, it is recorded as a TD 

formation. The same implementation has been used to select and verify TC development to TS 

stage, when Vmax surpasses a threshold of 34 kt for the first time. In some cases, the phases of TC 

formation (reaching TD) and development (reaching TS) may overlap. Our definitions for 

successful TD and TS formation forecasts also consider the location predicted by the model in 

comparison to real storm’s best-track. We do so by selecting TC centers that fall inside the 

Vietnam East Sea region, within 5 radius proximity to the best-track recorded within a 120-hr 

lead time. 
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Over the 2012-2019 period, we have collected a dataset comprising a total of 45 recorded 

TDs, while 35 among them continue to develop to TS stage and the rest are dissipated over the 

Vietnam East Sea. 

2.3. Logistic regression model predicting the tropical storm genesis 

2.3.1. Predictors 

The purpose is to forecast the probability of TC development reaching TS intensity based 

on a pre-existing TC formation predicted in ensemble forecasts. The study employs a logistic 

regression model with the dependent variable as a quantitative variable predicting a probability 

with values within the range [0; 1]. The initial objective of this study is to establish the predictors 

for modeling the occurrence probability of TS genesis in the Vietnam East Sea region (refer to 

Table 1). As outlined in Table 1, these predictors consist of both dynamic parameters (minimum 

sea-level pressure, low-level relative vorticity, mid-level vertical velocity, and vertical wind 

shear) and thermodynamic parameters (moist static energy, surface latent heat flux, and low-level 

horizontal moisture convergence). Research conducted by several authors [21–23] indicates 

that these critical meteorological parameters can effectively differentiate between developing 

and non-developing disturbances, particularly in the context of TS formation. The local 

environment refers to atmospheric state centered on the location of a TC within 5 radius and 

standardized due to differences in dimension and scale. 

Table 1. Descriptions of logistic regression model variables. 

Categorization Variable Descriptions 

Dynamic 

Pmin Minimum sea-level pressure 

low Average mid-to-low-level vertical vorticity ζlow = ∫ ζ (
dp

g
)

500

850
 

mid Average vertical velocity in 700 – 500hPa 

Vsh 

Vertical shear between 200 and 850 hPa  

Vsh = √(u200 − u850)2 + (v200 − v850)2 

Thermodynamic 

MSE 

Column-integrated moist static energy normalized by Cp 

 MSE =  
∫ CpT+gz+Lvqv(

dp

g
)

0
ps

Cpd
 

SLHF Surface latent heat flux 

HMClow 

Low-level horizontal moisture convergence 

HMClow = − ∫
Δuqv̅̅ ̅̅ ̅

Δx
+

Δvqv̅̅ ̅̅ ̅

Δy
(

dp

g
)

700hPa

ps

 

Student t-test is conducted on the probability distribution function of each predictor, based 

on 2 datasets categorized as having TC development reaching TS intensity (DEV) and not having 

such development (NON-DEV). Null hypothesis H0: x̅i,1 = x̅i,0; Alternative hypothesis H1: 

x̅i,1 ≠ x̅i,0. 

where x̅i,1  is the mean value of the i-th predictor in DEV group, and x̅i,0  is the 

corresponding mean value in the NON-DEV group. If the null hypothesis is rejected, and the 

alternative hypothesis is accepted with a 95% confidence level, meaning that there is a 

significant difference in the parameter’s value between the two groups, then the parameter is 

selected as a predictor to be included in the logistic regression model. 

2.3.2. Logistic regression model configurations 

The logistic regression model is based on the concept of linear regression for 

classification problems. Starting with the output of a linear regression function, the logistic 

regression model uses the sigma function to find the probability distribution of data within 
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the range [0; 1]. Assume that we have a regression function with a set of n independent 

variables 𝑥 = (1, 𝑥1, 𝑥2, … , 𝑥𝑛):  

�̂� = 𝑔(𝑥) = 𝑤0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑛𝑥𝑛 = 𝑤𝑇𝑥 (1) 

Here, represents the regression coefficients. To transform this equation using the sigma 

function to predict probabilities and introduce non-linearity into the regression model, we 

have the following expression: 

𝑝(𝑦 = 1|𝑥; 𝑤) = 𝜎(𝑤𝑇𝑥) =
1

1 + 𝑒−𝑤𝑇𝑥
 (2) 

𝑝(𝑦 = 1|𝑥; 𝑤) is the conditional probability of the event y = 1 occurring based on the 

independent variables x and the regression coefficients w. 

To assess the regression model’s validity through cross-validation analysis, we conduct 

cross-validation of the regression model on a dataset consisting of 45 cases of TC genesis 

during the period 2012-2019, with 35 cases of TCs developing to TS and 10 of no 

development. This is done by dividing the dataset into 5 subsets (5-fold cross-validation). To 

ensure that the train and test datasets have a sufficient number of cases for both TC 

development and non-development, the number of TCs in each subset is established as 

follows: 

- Train data: 28 developing TCs and 8 non-developing TCs. 

- Test data: 7 developing TCs and 2 non-developing TCs. 

In addition, to test the utility of the predictive equation and derive the final forecasting 

equations, the study employs the Wald test to assess the influence of the predictors on the 

regression model. The study uses  = 5%  as statistical significance threshold for the 

regression coefficients. The predicted results from ensemble dynamic-statistical model are 

determined from the average probability values of the ensemble members: 

Here, M = 21 is the total number of ensemble members, and pi,j represents the probability 

of predicting TC development from the j-th ensemble member for the i-th forecast. pi,j is 

equal to 0 by default if the ensemble member does not predict TD formation in the Vietnam 

East Sea within the 120-hr forecast period based on the dynamical model’s output. 

2.3.3. Verification metrics 

It is important to note that our study primarily centers around determining whether or 

not TS genesis has occurred within the Vietnam East Sea within a 120-hr lead time. In this 

context, the study does not specifically focus on the precise timing and location of the 

occurrence in comparison to observations. Consequently, the selection of verification metrics 

in this study is tailored to the specific goal of assessing the accuracy of forecasted 

probabilities (through Brier score) and the categorization of events versus non-events 

(through AUC-ROC). 

- Brier score: BS =  
1

N
∑ (pi − ai)

2N
i=1  calculates the forecast accuracy by comparing the 

forecasted probability with the actual observation, indicating if the event occurred or not [24]. 

N is the total number of observed events. A lower BS indicates a better forecast alignment 

with reality (BS range: 0-1). 

- AUC-ROC assesses the binary classification model performance, measuring a model’s 

ability to distinguish positive and negative classes [25, 26]. A high AUC-ROC value (close 

to 1) suggests accuracy, close to 0 indicates inverse predictions, and 0.5 signifies poor 

classification.  

3. Genesis forecasting in the WRF-LETKF 

Figure 2 represents the verification scores of TD genesis and TS genesis over the 

Vietnam East Sea for 8 years during 2012-2019 from each ensemble member from WRF-

LETKF. For TD genesis forecasts, the WRF-LETKF ensemble system demonstrates 

reasonably good forecasting skill up to a 5-day lead time, with the lowest BS occurring at 
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approximately 3.5 days before the formation (equivalent to 84-hr cycle). With the 48-hr 

forecast cycle, the ensemble system shows a stable increase in the probability of correctly 

predicted cases. 

However, when it comes to forecasting the development of TCs reaching TS stage (TS 

genesis), the Brier score indicates a significant decrease compared to the TD genesis forecast, 

with most values exceeding 0.1 and a clear decreasing trend in the near forecast cycles. When 

combined with the AUC-ROC skill score, it is observed that the WRF-LETKF performs well 

in classifying the development of TCs to TS intensity in the forecast cycles starting from 96-

hr, 84-hr, and 48-hr onward (with AUC-ROC values exceeding 0.6). In the forecast cycle of 

120-hr and 108-hr, the model fails to classify the possibility of TD development into storms 

accurately. 

 

Figure 2. Brier score (a) and AUC-ROC (b) assessing the prediction of TD and TS genesis in the 

Vietnam East Sea using direct forecast products from WRF-LETKF. 

In other words, an accurate forecast for the event of a TD genesis may not necessarily 

convey more accurate information about the TD’s development into a full-fledged TS. It is 

the motivation of this study to use products in TD forecasted by the WRF-LETKF system to 

predict the probability of TS in a statistical combination.  

4. Selection of predictors  

In the context of multivariate 

regression model, it is crucial to 

avoid strong correlations among 

the independent variables. A high 

correlation suggests that the 

features of one independent 

variable closely coincide with 

those of another, potentially 

leading to a substantial reduction in 

the reliability of the model’s 

regression coefficients. Hence, in 

the current study, we conducted an 

in-depth assessment aimed at 

evaluating multicollinearity among 

the independent variables and 

explore the relationships between 

these independent and dependent 

variables (Figure 3). 

Results indicate that out of the 

total 7 candidate predictors selected 

to construct the logistic regression 

Figure 3. Correlation matrix between pairs of candidate predictors, 

specific correlation coefficients are highlighted in each subplot. The 

diagonal line represents probability distribution functions of 

individual parameters. 
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equation from the forecasted product, Pmin exhibits the highest correlation with the other 

variables. Specifically, the highest correlation coefficient value is observed between Pmin and 

the normalized MSE (-0.782; inverse correlation). The findings also highlight the cause-and-

effect relationship between the dynamic and thermodynamic features concerning the 

development of TCs, as manifested through the sea-level pressure at the cyclone center. 

Consequently, with the objective of building a logistic regression equation from independent 

predictors, Pmin is not utilized as a candidate variable.  

The predictor variables are directly chosen from the remaining candidate variables, 

which include Student t-tests. The selection results, as shown in Table 2, demonstrate that, at 

a statistical significance level of 5%, all candidate predictor variables meet the criteria and 

are selected as forecasting variables. Therefore, all dynamic and thermodynamic parameters 

selected for evaluation at the time of TD genesis exhibit distinct characteristics between 

developing and non-developing TC groups up to TS intensity. 

5. Results  

5.1. Ensemble dynamic - probabilistic model detecting TS genesis 

Table 2. Regression coefficients and statistical test values in logistic regression model. 

Eq. Variable 
Regression 

coefficient 
Wald P-value Eq. Variable 

Regression 

coefficient 
Wald P-value 

  Intercept* 1.6243 1343.6146 <0.01   intercept* 1.6661 1350.3482 <0.01 

  * 0.3576 50.2584 <0.01   * 0.4036 61.2068 <0.01 

1 SLHF* 0.4075 78.5723 <0.01 2 SLHF* 0.4268 82.0777 <0.01 

  MSE* 1.4384 404.3414 <0.01   MSE* 1.4215 405.1923 <0.01 

  HMClow* 0.2898 36.3438 <0.01   HMClow* 0.3384 47.6302 <0.01 

   -0.0246 0.2533 0.6147    -0.0162 0.108 0.7425 

  Vsh -0.0444 1.1774 0.2779   Vsh -0.076 3.2888 0.0698 

  intercept* 1.615 1321.1707 <0.01   intercept* 1.5918 1322.6212 <0.01 

  * 0.3662 51.6439 <0.01   * 0.3658 53.2859 <0.01 

3 SLHF* 0.4947 110.8745 <0.01 4 SLHF* 0.4133 81.8117 <0.01 

  MSE* 1.4487 415.7788 <0.01   MSE* 1.3863 400.4556 <0.01 

  HMClow* 0.2965 38.7205 <0.01   HMClow* 0.2942 37.8519 <0.01 

   -0.0137 0.0786 0.7792    -0.0123 0.0634 0.8012 

  Vsh -0.0813 3.7935 0.051   Vsh -0.0415 1.0286 0.3105 

  intercept* 1.6016 1318.983 <0.01  

   

 

  * 0.3677 53.4547 <0.01  *Values are significant at 95% level.  

5 SLHF* 0.4353 87.701 <0.01   

  MSE* 1.4676 421.0099 <0.01   

  HMClow* 0.3307 47.9665 <0.01   

  mid -0.0015 0.001 0.9752   

  Vsh -0.0632 2.4137 0.1203   

From the results shown in Table 2, the regression coefficients of most predictors, except 

for mid and Vsh, are positive, indicating a positive relationship between thermodynamic 

factors at the time of formation and the development of TCs to TS intensity. This implies that 

the likelihood of TCs reaching TS intensity increases with low-level vorticity and enhanced 

moisture convergence at the time of formation. The results clearly demonstrate the impact of 

vorticity, humidity, and low-level moisture convergence at formation on the forecast 

probability of TC development to TS, with statistical significance (p-value < 5%).  

Conversely, the estimated regression coefficients for mid and Vsh, are negative, 

suggesting that mid-level vorticity and decreased wind shear in the environment contribute 
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to the potential for TC development. However, the Wald test indicates that these parameters 

do not have a significant impact (mid has a p-value > 0.6 in all prediction equations) because 

they do not meet the 95% confidence level of the test. With these results, the probabilistic 

equations for the development of TCs in the Vietnam East Sea from the logistic regression 

model as follows: p(TS genesis) =
1

1+e−z
 with: 

Eq. 1: z = 1.6243 + 1.4384  MSE + 0.4075  SLHF + 0.3576  low + 0.2898  HMClow 

Eq. 2: z = 1.6661 + 1.4215  MSE + 0.4268  SLHF + 0.4036  low + 0.3384  HMClow 

Eq. 3: z = 1.6150 + 1.4487  MSE + 0.4947  SLHF + 0.3662  low + 0.2965  HMClow  

Eq. 4: z = 1.5918 + 1.3863  MSE + 0.4133  SLHF + 0.3658  low + 0.2942  HMClow 

Eq. 5: z = 1.6016 + 1.4676  MSE + 0.4353  SLHF + 0.3677  low + 0.3307  HMClow  

5.2. Validation of the model predictability 

The predictive outcomes of the logistic regression model concerning the potential 

development of TCs reaching TS stage in the Vietnam East Sea are assessed across test data 

reflecting variations between different forecasting cycles (Table 3). In general, BS values are 

relatively low, mostly below 0.2, in all forecasting cycles and prediction cases, demonstrating 

the model’s high predictive accuracy. Specifically, BS is at its lowest value in the 60-hr 

forecast cycle (~2,5 days) when the logistic regression model is applied, especially in Eq. 3, 

with a value of 0.0893. 

Table 3. Forecasting skill scores evaluating the probabilistic model on test data. 

Fcst. 

cycles 

(hrs) 

Ensemble dynamic-probabilistic model on test data 

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq.5 

AUC-

ROC 
BS 

AUC-

ROC 
BS 

AUC-

ROC 
BS 

AUC-

ROC 
BS 

AUC-

ROC 
BS 

-120 0.6538 0.1482 0.7083 0.1515 0.6731 0.1582 0.8846 0.1495 0.8077 0.1355 

-108 0.7885 0.1369 0.8654 0.1391 0.8077 0.1344 0.8462 0.1337 0.5417 0.0972 

-96 0.6667 0.1681 0.5417 0.1723 0.5833 0.1668 0.4792 0.1718 0.6875 0.1556 

-84 0.7556 0.1073 0.6667 0.1145 0.6667 0.1248 0.6222 0.1170 0.7333 0.1033 

-72 0.6667 0.1672 0.7308 0.1538 0.6731 0.1598 0.7692 0.1397 0.6346 0.1650 

-60 0.7949 0.0893 0.7949 0.1063 0.7885 0.1353 0.8974 0.1008 0.8077 0.1377 

-48 0.7115 0.1522 0.7292 0.1443 0.7436 0.1218 0.7179 0.1165 0.8205 0.1041 

-36 0.7708 0.1504 0.7727 0.1590 0.6250 0.1539 0.8333 0.1466 0.7576 0.1360 

-24 0.8974 0.0977 0.7500 0.1497 0.5385 0.1595 0.7500 0.1537 0.6923 0.1514 

-12 0.8393 0.1317 0.6538 0.1472 0.7857 0.1412 0.7500 0.1522 0.7857 0.1393 

0 0.7308 0.1527 0.7115 0.1593 0.8205 0.1211 0.8077 0.1435 0.6875 0.1630 

Furthermore, AUC-ROC are relatively high, ranging between 0.8 to 0.9 from all 

equations. This indicates that the regression models effectively differentiate between cases 

of TC development and non-development based on the environmental variables described. It 

also suggests that the regression model performs most effectively during the 60-hr forecast 

cycle compared to other cycles. In contrast, during the 96-hr cycle, all the prediction 

equations yield BS values exceeding 0.16, and AUC-ROC hovers around 0.5.  

An overall assessment reveals that among the proposed prediction equations, Eq. 1 

demonstrates the highest predictive capability across the test dataset, with relatively high 

AUC-ROC (the lowest being 0.6538 at the 120-hr cycle) and BS values below 0.1 in the 60-

hr and 24-hr cycles before the formation. 
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Table 4. Forecasting skill scores evaluating the probabilistic model on test data. 

Fcst. 

cycles 

(hrs) 

Ensemble dynamic-probabilistic model in 2012-2019 period 

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 

AUC-

ROC 
BS 

AUC-

ROC 
BS 

AUC-

ROC 
BS 

AUC-

ROC 
BS 

AUC-

ROC 
BS 

-120 0.7885 0.1507 0.7692 0.1504 0.8077 0.1497 0.8077 0.1517 0.8077 0.1508 

-108 0.8846 0.1198 0.8846 0.1192 0.8846 0.1171 0.8846 0.1207 0.8846 0.1192 

-96 0.7500 0.1725 0.7500 0.1732 0.7500 0.1719 0.7500 0.1737 0.7500 0.1729 

-84 0.8333 0.1256    0.8333 0.1256 0.8333 0.1253 0.8333 0.1271 0.8333 0.1263 

-72 0.6731 0.1926 0.6731 0.1921 0.6731 0.1918 0.6731 0.1926 0.6731 0.1918 

-60 0.8462 0.1459 0.8462 0.1454 0.8462 0.1442 0.8462 0.1463 0.8462 0.1453 

-48 0.7500 0.1464 0.7500 0.1464 0.7500 0.1447 0.7500 0.1464 0.7500 0.1457 

-36 0.7292 0.1602 0.7083 0.1603 0.7083 0.1601 0.7292 0.1609 0.7083 0.1598 

-24 0.6923 0.1483 0.6923 0.1489 0.6923 0.1481 0.6923 0.1490 0.6923 0.1483 

-12 0.7143 0.1964 0.7143 0.1977 0.7143 0.1971 0.7143 0.1969 0.7143 0.1970 

0 0.6923 0.1987 0.6731 0.1998 0.6923 0.1979 0.6923 0.1988 0.6923 0.1984 

By examining BS and AUC-ROC, it is evident that the dynamical-statistical hybrid 

model has seen a significant improvement compared to the forecast results analyzed in Figure 

2, especially in the early forecast cycles before actual formation time. In these cycles, all 

prediction equations exhibit notably reduced BS values, ranging from over 0.23-0.3 (Figure 

2) down to 0.11-0.19 (Table 4). This reduction indicates that the forecast model provides a 

more accurate description of whether or not a TC will develop to TS intensity. The lowest 

BS values are achieved in the 120-hr and 108-hr forecast cycles preceding the actual 

formation, with BS decreasing from 0.294 to an average of 0.15 and from 0.283 to an average 

of 0.12, respectively. Although the results do not significantly differ between the various 

forecast cycles, the analysis shows that BS increases in the 12-hr preceding the formation 

compared to the original ensemble forecasting products, suggesting that the potential 

development of at TD to TS intensity can be better identified when the initial conditions 

incorporate basic information about atmospheric circulation and the nearby TC structure at 

the time of formation. 

Observing BS and AUC-ROC, no significant differences are found among the logistic 

regression equations, indicating similarity in performance across the cross-validated train and 

test datasets. The verification metrics for each prediction equation on the cross-validated test 

dataset (Table 3) and the entire dataset (Table 4) yield similar results, ensuring the model’s 

consistent forecasting capabilities. Therefore, the optimized logistic regression model, based 

on the proposed ensemble forecasting results, can be considered an effective tool for 

forecasting the likelihood of TC development to TS intensity in the Vietnam East Sea. 

6. Summary and conclusion 

While the general performance of the assimilated multi-physics WRF-LETKF in short-

term forecasting, regarding tropical disturbances evolving into TD, is quite accurate when 

assessing probabilities and errors. However, the pure dynamical model’s forecast for the 

likelihood of further development into TS exhibits lower accuracy. In the study, we tried to 

develop a simple statistical model from these products and discussed the capability of 

forecasting the TS genesis of TCs in the SCS using the logistic regression model. We develop 

an ensemble dynamic-probabilistic forecast model aiming at forecasting a probability of the 

higher or lower level of TS genesis frequency of TC in each of the 45 TC formation events 

during the period 2012-2019. 

The forecast model incorporated a total of seven candidate predictors, which 

encompassed both dynamic parameters (minimum sea-level pressure, relative vorticity of the 



J. Hydro-Meteorol. 2023, 17, 19-30; doi:10.36335/VNJHM.2023(17).19-30 28 

 

lower-level, vertical velocity of the middle-level, and vertical wind shear) and 

thermodynamic parameters (moist static energy, surface latent heat flux, accumulated 

moisture convergence of the lower-level). Out of these seven variables, six were selected as 

predictors for the logistic regression model after multicollinearity verification and a 

significance test, except for minimum sea-level pressure. We developed a combination of 

equations for each train-test datasets in cross-validation procedure and concluded that vertical 

velocity at lower level and vertical wind shear have a minor impact to the probabilistic 

forecast, therefore excluding them from our newly developed logistic regression model. 

In a broader context, when considering the performance of the logistic regression 

equations derived from the ensemble prediction products, the results are promising. The 

model generates a forecast probability between 0 and 1 for each member forecast. The 

combination of probabilities between ensemble members for a forecast lead time determines 

the overall likelihood of TS genesis. The forecasting skill using this approach has improved 

compared to direct forecast products, especially in the early forecast cycles before the actual 

formation occurs. Additionally, the results of the regression coefficients and forecasts 

produced by the model align closely with the outcomes from the utilization of test dataset, 

thus indicating the stability and validity of the newly developed model as an accurate 

statistical tool. Consequently, the forecast probability generated by this model can be 

effectively utilized as a probabilistic forecast value in predicting the status of TS genesis. 

The logistic regression model offers the advantage of providing rapid forecasting 

information while accommodating the non-linear nature of variables. In the future, our focus 

will be on extending the forecast time range of the model and incorporating a more 

comprehensive set of variables for a predictive model of TS genesis. 
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