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Abstract: Global navigation satellite system is now widely applied for various applications. 

For high accuracy requirements such as surveying and mobile mapping system, real-time 

kinematic positioning (GNSS RTK) is commonly used. In the open sky, GNSS RTK can 

achieve centimeter level of accuracy in case of RTK fixed solution. However, in the GNSS-

denied or -noisy environment such as under tree canopy or under bridge, GNSS RTK 

accuracy becomes worse. To overcome this issue, this study applies an integrated system 

consisting of an GNSS RTK module and Inertial Measurement Unit (IMU) to continuously 

provide navigation solutions including position, velocity, and attitude. For data fusion, 

Extended Particle Filter (EPF) is used in this research. EPF is considered as a hybrid 

estimation strategy to overcome the limitations of Extended Kalman Filter, that is popularly 

used in data fusion. The experimental results indicated the benefit of the integrated system, 

particularly in the GNSS hostile environment. In addition, the testing result illustrated that 

the performance of EPF is significant compared to that of EKF. 
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1. Introduction 

Mobile Mapping System (MMS) has been widely applied for collecting geo-spatial data. 

In principle, MMS has two main steps: (1) capturing images by cameras or point clouds by 

laser scanners of objects of interest and (2) transforming them into mapping frames based on 

the internal and exterior orientation parameters [1, 2]. In the MMS, the position and 

orientation of the mapping sensors are popularly determined based on the integration of the 

Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU). Due to 

the low-cost and small size Micro-Electro-Mechanical System (MEMS) IMU is commonly 

used. However, the performance of the MEMS IMU is restricted, particularly in case of no 

additional constraint. [3] indicated that with the integration of GNSS and MEMS IMU in 

open sky areas such as highways and routes between countries, the position accuracy can 

reach the centimeter level. However, the position and attitude accuracy of MEMS IMU based 

in the downtown area where GNSS signals are often obstructed still do not meet the 

requirement of precise mapping with land-based MMS.  

The main purpose of this study is thus to improve the performance of MMS utilizing 

GNSS/MEMS IMU integration while reducing their cost and size. Two kinds of error are 

presented in the error theory manner: systematic error and noise affecting the performance 

of the system. With MEMS IMUs, systematic errors are mainly from biases and scale factors 

of the gyroscopes and accelerometers. Calibration is implemented for treatment. However, 

intensive calibration with professional equipment would increase the cost significantly. In a 

practical sense, aid measurements from GNSS and other integrated sensors can compensate 

for the systematic error of the IMU. Developing an effective integration strategy is thus the 
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key to reducing the effect of systematic errors in an IMU. Although stable in the long term, 

GNSS measurements suffer from many sources of deterministic errors, such as ionosphere, 

troposphere delay, time synchronization error, and multipath [4]. For reliable aid 

measurements, GNSS data processing is considered. 

Unlike systematic errors, noise is a form of un-deterministic error that can be treated by 

stochastic processing. For this task, the behavior of noise should first be modeled. The 

general theory about noise modeling was presented by [5] and the behavior of noise in an 

INS was described by [6, 7]. In general, the noise behavior in INS is divided into four types: 

white noise, random constant, random walk, and exponentially correlated random. 

Calibration is necessary and the noise is modeled by an appropriate mathematical process to 

understand the behavior of sensor noise. The Gauss-Markov process is popularly used to 

describe and model the behavior of noise. Given that the noise has been modeled, it is 

accounted for in the estimation process (i.e., Kalman filter (KF)) to obtain the highest 

probability of the output solutions. 

The two effective ways to restrict these kinds of errors to improve the performance of 

the integrated navigation system are improving GNSS solution using GNSS Realtime 

Kinematic Positioning (RTK) and using optimal estimation algorithms. While GNSS RTK is 

easy to archive using enclosed commercial GNSS RTK receivers, this research focuses on 

estimation strategies. For estimation, the KF [8] is popularly known as an optimal estimation 

strategy. The KF aims to determine the state vector of the system states based on the 

minimization of covariance. The advantage of the KF is its reliability and simplicity. The 

main limitation of KF is that it can only be applied on linear function and assuming Gaussian 

noises. When the state and measurement model functions are non-linear, Linearized KF 

(LKF) or Extended KF (EKF) are applied instead of KF for estimation. In these strategies, 

non-linear functions are linearized keeping the first order of Taylor series expansion. The 

calculation sequence is similar to that of KF. However, LKF and EKF have limitations that 

were reported by several researchers [9–12]. The limitations of LKF or EKF are that only 

small errors are allowed during estimation and the presence of nonlinear error behavior might 

violate the assumption, thus generating biased solutions. Choosing an appropriate INS error 

model in KF-based systems is also not a trivial task [13]. 

One of the approaches to improve the performance of the integrated system is sampling-

based filter approach such as Particle Filters (PF) [14, 15] and Unscented Kalman filter 

(UKF) [10, 13]. A typical and early developed algorithm of sampling-based filtering 

approaches is the PF. In the PF, the set of points (particles) is generated randomly with 

associated weights. The details of the PF were presented by [14, 16]. Besides the advantages 

that have been reported, PF also has several disadvantages that make it unpopular in 

integration. PF relies on important sampling, thus requires the design of a proposal 

distribution that can approximate the posterior distribution reasonably well. Designing such 

proposals is generally hard [14, 15]. Another improvement of sampling-based filter methods 

is using a hybrid scheme between generic PF and other linear Gaussian estimation methods. 

The study [17] introduced hybrid methods in which EKF and UKF Gaussian approximations 

are used as the proposal distribution for PF. The simulation result shows that this hybrid 

scheme, particularly PF based on UKF, performs better than other linear Gaussian estimation 

methods such as EKF and UKF. The study [18] applied and evaluated the performance of 

UPF, UKF, and EKF with INS/GPS integration using MEMS IMU. The results indicate that 

the improvement of non-linear, non-Gaussian estimation compared with EKF was about 10% 

to 20%. The study [19] evaluated the feasibility of some estimations for non-linear function 

in positioning. The study [20] evaluated the performance of a low-cost INS/GPS integration 

system using the street return algorithm. 

In general, the advantage of sampling-based methods over KF-based methods is that it 

can be applied on a non-linear function with arbitrary density distribution. Their performance 
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is thus better than that of KF-based methods. Some limitations of sampling-based methods 

were still reported. The choice of an optimal proposal probability density function to draw 

samples is difficult to implement. The manner of generating the samples is also a difficult 

task for certain applications. Computational burden is the main disadvantage of these 

algorithms for real-time applications. In order to deal with non-Gaussian noise in the 

GNSS/IMU system, this study applies a non-linear, non-Gaussian estimation algorithm, 

called Extended Particle Filter (EPF) to improve the performance of the system. 

2. Methods  

2.1. Integration strategy 

In the integration scheme, the GNSS carrier-phase measurements are processed using a 

base station. The GNSS RTK module provides positions and velocities in the navigation 

frame as the updating measurements for the data fusion engine such as EKF. Angular rates 

and specific forces, the output of IMU is processed based on an INS mechanization to provide 

position, velocity, and attitude. In data fusion engine, EKF is first applied. A set of particles 

is generated based on Gaussian approximation from EKF output. EPF is then applied to 

provide optimal solutions. Figure 1 shows the integration scheme. 

 

Figure 1. The integration scheme. 

2.2. Extended Kalman Filter 

EKF is the combination of nonlinear and linearized filtering techniques. In the prediction 

step, the nonlinear function is directly used to time-update the state vector, but the associated 

covariance is estimated based on the Jacobian matrix: 

 ( )k k 1 k 1x f x w− −= +                     (1) 

where xk is the state vector consisting of position, velocity, and attitude at time k; w is 

system noise. Components of state vector is described in the below equation: 

       
T

n n n

21 1 b g a g ax r r b b s s
 =                           (2) 

where rn, vn, and rb
n are position, velocity, and attitude of the system in the navigation 

frame; bg, ba, sg, and sa are the biases and scale factors of the IMU, respectively. 

In the measurement update step, state vector is propagated through the nonlinear 

measurement equation to calculate the innovation in the next step: 
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      ( )k kz h x n= +                             (3) 

where zk is an updating measurement; h(xk) is a function of a state vector; n is the 

measurement noise. 
Figure 2 depicts the process and the performance of the EKF. 

 

Figure 2. The process and performance of the EKF. 

2.3. Estimation with Extended Particle filter 

Generally, the hybrid estimation strategies use a Gaussian approximation as the proposal 

distribution to generate particles. A Gaussian approximation of ( )k k 1 0:kP x x ,z− using EKF 

is called Extended Particle Filter (EPF). In these strategies, first, EKF is implemented to 

obtain the Gaussian approximation of ( )k k 1 0:kP x x ,z− including estimates of the state and 

their covariances. Then the particles are sampled based on those estimates. 

( )
i

i i
k k 1x f X , w−=                               (4) 

With associated weight  

  
( ) ( )

( )

i i i
k kk k 1

i

k

k k

p z x p x x

w
N x ,P

−

=                      (5) 

where ( )k k 1 1:k 1P x x , z− − denotes the distribution density function of xk  given xk−1 

and z1:k-1; N(.) denotes the Gaussian distribution; x̂k, Pk  are mean and covariance 

approximated by EKF. 

The state vector and covariance matrix of the current time epoch are determined by 

weighted average of the generated particle: 

N i i
k ki 0

x w X
−

=
=                            (6) 

       ( )( )
T

N i i i
k kxx k ki 0

P w X x X x
− −−

=
= − −                  (7) 

Figure 3 describes the flowchart of the hybrid estimation and Figure 4 illustrates the 

principle of this estimation strategy. 
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Figure 3. Flowchart of Extended Particle Filter. 

 

Figure 4. Principle of Extended Particle Filter with Gaussian approximation. 

3. Experiment and discussion 

The purpose of the experiment is to evaluate the performance of the integrated system in 

comparison with a stand-alone GNSS receiver and between estimation strategies, including 

EKF and EPF. For those purposes, three systems were set up on a platform to evaluate the 

performance of the given system and methodology. The reference system is a dual frequency 

RTK GNSS receiver, Leica viva GS16. The system is connected with the VNGEONET 

CORSs for RTK fixed solutions. In addition, various check points were built along the 

reference trajectory. The coordinates of the check points were determined by using a total 

station, the accuracy is guaranteed at the level of centimeter. The first testing system is a 

single frequency GNSS receiver, GNSS EVK-NEO M8T to provide Single Point Positioning 

(SSP) solution. The second testing system is the integration of the GNSS RTK module, Ublox 

ZED-F9P and an IMU, Xsens-MTi-3. Specification of the integrated system is described in 

table 1. The integrated system and testing platform is depicted in Figures 5a, 5b.  
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Table 1. The specification of main components. 

Devices Unit Value 

Number of concurrent 

GNSS 

GNSS 

system 

4 

Position accuracy m 0.01 m + 1 ppm 

Output rate Hz 1 Hz 

Gyroscope Unit Value 

In-run Bias [°/s] 10 

Noise density [°/s/√Hz] 0.007 

Non-linearity [%FS] 0.1 

Accelerometer   

In-run Bias [mg] 0.03 

Noise density [mg/√Hz] 120 

Non-linearity [%FS] 0.5 

 

Figure 5. The integrated system (a) and testing platform (b). 

The data were collected continuously under different environment scenarios, including 

in open sky view and GNSS-denied view in Hanoi, Vietnam (Figure 6). The integrated GNSS 

RTK/IMU data is processed by a software module written in C++ programing language with 

two algorithms, EKF and EPF. The graphical user interface of the software module can be 

seen in Figure 7a. For analysis, four output solutions including GNSS SSP, GNSS RTK, 

GNSS RTK/IMU with EKF and GNSS RTK with EPF are compared with GPS time 

synchronization. The trajectory of the test can be seen in Figure 7b. For detailed analysis, 

enlargements of two typical testing scenarios including in the open sky view and under bridge 

view as shown in Figures 8a, 8b. The numerical analysis can be seen in Tables 2, 3. 

 

Figure 6. Testing scenarios in open sky view (a) and GNSS-denied view (b). 

Table 2. Numerical results in the open sky view area. 

 Availability (%) Min(m) Max(m) Mean(m) Std. Deviation(m) 

GNSS SSP  99 0.450 9.610 2.400 1.560 

GNSS RTK 95 0.002 0.720 0.030 0.026 

GNSS RTK/IMU EKF 99 0.003 0.810 0.040 0.035 

GNSS RTK/IMU EPF 99 0.003 0.710 0.040 0.032 

(a)

(b)

(a) (b)
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Figure 7. (a) GUI of the software module, (b) Testing trajectory of the test. 

 

Figure 8. (a) Enlargement of scenario open sky view area in the test, (b) Enlargement of under bridge 

area in the test. 

Table 3. Numerical result in the under-bridge area. 

 Availability (%) Min(m) Max(m) Mean(m) Std. Deviation(m) 

GNSS SSP 72 0.120 20.600 4.650 5.560 

GNSS RTK 

- SSP 

- RTK float 

- RTK fixed 

57 

20 

0 

0.05 5.820 3.540 4.563 

GNSS RTK/IMU_EKF 99 0.015 10.530 2.401 3.403 

GNSS RTK/IMU EPF 99 0.012 1.530 1.240 1.340 

From the test, in the open sky, GNSS can continuously provide solutions with 

homogenous accuracy. GNSS RTK can provide a position at accuracy about 3 centimeters 

while GNSS SSP can provide 1.5-meter level of accuracy. Consequently, the integration of 

GNSS RTK/IMU with EKF or EPF can provide navigation solution at accuracy of about 3-

4 centimeters. In this case EKF or EPF do not help to improve the accuracy of the system 

because the position update mainly relies on the GNSS RTK. 

In the under-bridge environment, accuracy, and availability of GNSS degrade seriously.  

The availability of GNSS SPP solution is 72% at accuracy of about 6 meters. In this testing 

scenario, GNSS RTK cannot provide RTK fixed solution any time, only RTK float solution 

(a) (b)

(a) (b)
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of 20% and 57% of SSP. Overall positional standard deviation of GNSS RTK is about 5 

meters. In contrast, with the integration of GNSS RTK and IMU, availability of navigation 

solution is still at 99%. In this case, the performance of EPF is better than that of EKF with 

standard deviation of 1.3m compared to 3.4m in the EKF. 

4. Conclusions 

This research evaluates the performance of an integration scheme that combines the 

GNSS RTK and IMU and an estimation strategy called EPF.  

Field test in different environmental scenarios were implemented to collect data for 

analyzing the performance of the different integration architecture and estimation strategies.  

The result from the experiment indicated that the integration of GNSS RTK/IMU enables 

to seamlessly provide navigation solution in any environmental scenarios. However, the 

positional accuracy of the system mainly relies on the position provided by GNSS.  

The EPF with non-Gaussian noise estimation performs a significant improvement in 

terms of positional accuracy compared to that of EKF. 
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