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Abstract: Building or predicting the trajectory of drifting objects is significant in maritime 

studies and search and rescue operations. The trajectory of a drifting object can be 

determined using traditional tools with marine dynamic models or through artificial 

intelligence models. From the drifting buoy data collected between December 19 and 

December 28, 2003, the research team employed the CNN (Conv1D) model for analysis. 

The analysis results indicated that by using the Adam optimizer, the Huber loss function, 

and 256 filters in the hidden layer, the characteristic parameters for the model’s 

performance were determined as RMSE = 0.04004, MAE = 0.032304 degrees, and R² = 

98%. When using the SGD optimizer and the mean squared error (MSE) loss function, both 

RMSE and MAE values decreased by up to four times compared to the previous case, while 

the R² value reached 99.9% with 64 filters in the hidden layer. When the number of filters 

in the hidden layer was increased to 128, the performance of the CNN (Conv1D) model 

improved by up to 20%, with RMSE = 0.007863deg and MAE = 0.006653deg. The R² 

value when predicting the trajectory of drifting buoys using the CNN (Conv1D) model with 

the SGD optimizer and the MSE loss function approached approximately 100%, indicating 

that this model is suitable for the input data in predicting the trajectory of drifting buoys. 

Increasing the number of filters in the model's hidden layer from 128 to 256 did not change 

the model's predictive performance, demonstrating that the optimal number of filters for 

this case is 128. However, the RMSE result achieved in this study is still relatively large 

(0.87 km), possibly due to the limited input data. Future work should continue to 

experiment with drifting buoy data analysis using a larger input dataset. 

Keywords: Drifting buoy data; Artificial intelligence; Deep learning; Time series data. 

 

1. Introduction 

To ensure maritime safety, it is essential to forecast the position of drifting objects at sea 

for search and rescue operations and to predict the trends influenced by environmental 

incidents, such as oil spills. Numerous studies have been conducted on predicting drifting 

objects at sea [1, 2]. To address the problem of predicting drifting objects at sea, one can 

utilize traditional mathematical models [3] or apply artificial intelligence models [4, 5]. 

The use of recurrent neural networks to improve the accuracy of drifting buoy trajectory 

models at sea, optimizing ocean surface flow data is explored in [6]. This model integrates 
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data from drifting buoys and satellites to address the limitations of traditional models in 

predicting small flows, enhancing both temporal and spatial resolution. Experiments were 

conducted in the Gulf of Mexico. Acoustic depth measurement buoys attached to DFADs are 

employed in [7] to improve tropical tuna fishing efficiency. Using a random forest method, 

acoustic signals are analyzed to detect the presence and size of tuna schools, achieving a 

detection accuracy of 75-85% beneath DFADs in the Atlantic and Indian Oceans. These 

results contribute to creating an independent index of tuna quantities, aiding in conservation 

and resource management. 

Statistical methods for predicting water current velocity (WC) based on the relationship 

between the position and velocity of drifting buoys have been proposed in [8]. Two methods 

were applied: weighted least squares regression for linear relationships and support vector 

regression for nonlinear spaces. The results showed a good agreement between actual 

measurements and WC predictions from field experiments near San Diego. 

The potential of using Global Navigation Satellite Systems (GNSS) to measure river 

water levels has been explored through the development of compact and user-friendly buoys 

equipped with high-precision GNSS receivers. These buoys were tested in the Mekong Delta, 

Vietnam, where they produced highly accurate results, with a mean error of less than 2 cm. 

The buoys show promise for applications such as flood monitoring and tracking water 

movements, while also providing valuable data on hydraulic systems [9]. The 

FreeOceanWave Dataset (FOWD) was developed to analyze extreme wave events at sea, 

aiding in the conversion of raw data into clear categories of sea state parameters. With enough 

data on wave height, sharpness, and maximum wave height, this dataset enables strong 

predictions of extreme wave activity [10]. 

A machine learning method based on the Extra Trees (ET) algorithm was proposed to 

predict large wave heights in coastal areas. By utilizing data from CDIP buoys, this method 

achieved a Scatter Index of 0.130 and RMSE of 0.14 for one-day predictions, and a Scatter 

Index of 0.110 with an RMSE of 0.122 for 14-day predictions. These results show that the 

method outperforms existing prediction techniques [11]. Efforts were made to enhance the 

accuracy of particle tracking techniques near the Korean Strait by comparing flow-based 

tracking models with machine learning models. The data used included the movement 

trajectories of drifting buoys, predictions from linear regression and decision trees, as well 

as predictions from numerical models. The results indicated that the decision tree model 

achieved the highest accuracy in terms of CC and RMSE, while the MOHID model 

performed best in terms of NCLS [2]. 

Harmful algal blooms (HABs) pose significant threats to public health and aquatic 

ecosystems. A system combining high-frequency automated monitoring with machine 

learning techniques has been employed to develop soft sensors for chlorophyll-a (Chl-a) data. 

Over a three-year period, data from the As Conchas reservoir demonstrated that the Chl-a 

sensor provides a rapid and cost-effective method for water sampling in areas at risk [12]. A 

new framework based on novel data has been developed to accurately estimate the drift of 

objects in marine environments in real-time, combining awareness-based sensor technology 

and deep learning algorithms. The research established the drift characteristics of objects 

such as humanoid 3D models and rectangular pelican boxes, with wind and flow factors 

measured throughout the experiments. The results indicate that drift coefficients are 

significantly influenced by wind and flow [13]. 

A deep learning model integrating attention mechanisms with ResNet GRU (RGA) was 

proposed to predict the short-term drift of multifunctional buoys, with the goal of improving 

the accuracy of buoy location tracking. The experimental results demonstrated that RGA 

outperformed other models, achieving mean error, mean absolute error, and mean percentage 

error values of 5.11, 1.61, and 15.58, respectively [1]. A new machine learning framework 

for short-term wave condition prediction was proposed to aid in decision-making for 
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maritime operations. By combining Long Short-Term Memory (LSTM) networks with 

existing spatial prediction models, the system achieved high accuracy, with R² values of 

0.9083 for one-hour wave height predictions. These results showed that the model's 

performance was comparable to traditional prediction products [14]. 

A drift trajectory prediction technique was validated to reduce the impact of rising 

maritime incidents in South Korea. The findings showed that incorporating drift factors 

significantly enhances the accuracy of position predictions, which is essential for improving 

maritime search and rescue operations [15]. A long-term trajectory prediction solution for 

surface drifting buoys (SDB) based on artificial intelligence technology is proposed. The 

CNN–BiGRU–Attention model was developed to improve trajectory prediction accuracy, 

showcasing excellent convergence and generalization performance in SDB predictions under 

diverse marine conditions [5]. 

Numerical methods and monthly averaged data were applied to determine the trajectory 

of drifting objects at sea, providing initial guidance for their general drift direction [16]. The 

MIKE model was used to simulate the drift trajectories of objects in specific cases [17]. 

Artificial intelligence has been relatively widely used in research to determine the risk 

of natural disasters in spatial contexts [18, 19] or analyze time-varying data sequences [20, 

21], with limited studies on analyzing data that changes both spatially and temporally, such 

as data from drifting buoys at sea. Vietnam has a maritime area of up to millions of square 

kilometers, playing a crucial role in ensuring territorial sovereignty, national security, and 

the socio-economic development. Forecasting the positions of drifting buoys specifically, 

and forecasting the trajectories of drifting objects in general, is crucial for search and rescue 

operations at sea. Additionally, the forecasting results contribute to the accurate interpolation 

of data used in oceanographic research, such as current data, sea surface temperature, salinity, 

etc. These data are all spatially and temporally dynamic. The CNN (Conv1D) model has 

proven effective in time series data prediction; hence, this study proposes applying the CNN 

(Conv1D) model to forecast the trajectory of drifting buoys using experimental data from the 

East Sea. 

2. Materials and methodology 

Drifting buoy data is provided by various scientific organizations worldwide, such as the 

National Oceanic and Atmospheric Administration (NOAA) [22], the European Space 

Agency (ESA) [23], etc. This study uses drifting buoy data provided by NOAA. The collected 

data can be stored in .csv format with a wealth of information, including the drifting buoy's 

ID, time, latitude, longitude, northward and eastward velocity, details about the buoy type, 

managing agency, and some other information. Some detailed information about the 

experimental data is provided in Table 1 below. 

Table 1. Detailed information about the study data. 

Type of information Details 

Drifting buoy ID 41167 

Start time 2003-12-19 

Stop time 2003-12-28 

Latitude (minimum, maximum) (degrees) 21.21863, 22.30562 

Longitude (minimum, maximum) (degrees) 119.23117, 119.99896 

Buoy type SVP 

Float Diameter (cm) 30.5 

Signal Decimation (hour) 1 

The research method in this paper is illustrated in Figure 1. Based on the original dataset, 

key information such as time, latitude, and longitude is processed and used as input for the 

artificial intelligence model. The focus of the prediction in this example is the latitude of the 

drifting buoy. To ensure compatibility with the computer program, the data format must be 

adjusted, such as normalizing time values. The dataset is subsequently divided into training 
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and testing subsets, following a 70%-30% split. The 

normalized input includes components like time, latitude, 

and longitude, with latitude values serving as the primary 

target for prediction. 

The Convolutional Neural Network (CNN) with 

Conv1D layers is a deep learning model designed 

specifically for processing sequential or time-series data, 

using one-dimensional convolutions. Instead of analyzing 

2D spatial data (as in images), Conv1D applies filters 

across one dimension, which makes it ideal for temporal 

data such as sensor readings, stock prices, and audio 

signals. The Conv1D layers slide a filter over the 

sequence, capturing local patterns and essential features 

that contribute to understanding trends and patterns in the 

data. Advantages of Conv1D CNNs include their ability 

to efficiently handle sequential dependencies by 

capturing important temporal features while requiring less computational power than 

traditional RNNs. Conv1D models also allow for effective parallelization during training, 

making them faster and more scalable for large datasets. Additionally, they offer flexibility 

in processing multivariate data, which can enhance predictive performance in time-series 

analysis tasks. 

In this study, the CNN (Conv1D) model was constructed with 256 filters in the hidden 

layer. The Adam optimizer and Huber loss function were used, with the number of epochs 

set to 200 and batch size set to 16. When implementing artificial intelligence models, 

evaluating model performance is important to ensure reliability and accuracy. Some typical 

parameters commonly used for this purpose are as follows: 

- Mean Squared Error (MSE): Measures the average squared difference between 

predicted and actual values, providing insight into model accuracy. Lower MSE values 

indicate a better fit. 

- Root Mean Squared Error (RMSE): The square root of MSE, RMSE expresses error in 

the same units as the data, making interpretation easier. It's particularly useful for identifying 

larger prediction errors. 

- Mean Absolute Error (MAE): Represents the average of absolute errors, showing how 

close predictions are to actual values without penalizing large errors more heavily than 

smaller ones, as MSE does. 

- R-squared (R²): Indicates the proportion of variance in the dependent variable 

explained by the model. An R² close to 1 suggests strong predictive accuracy.  

- Cohen’s Kappa: Measures the level of agreement between predicted and actual 

classifications, considering random chance. Higher Kappa values denote better agreement. 

- F1-Score: Balances precision and recall, especially useful in classification tasks with 

imbalanced classes, by providing a single metric for both accuracy and coverage. 

Based on the method selected above, the research team developed a data prediction 

program using the CNN(Conv1D) model with Python [24, 25], which incorporates library 

functions such as pandas, numpy, and sklearn [26, 27], among others. 

3. Results and discussion 

3.1. Prediction results with the CNN (Conv1D) model 

With the research method and the computer program developed as presented in the 

previous section, the prediction results of the latitude component of the drifting buoy 

trajectory with the statistical parameters are shown in Table 2. 

Figure 1. Method for predicting 

drifting buoy data at sea. 
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Table 2. The parameters characteristic of the forecasting performance of the CNN(Conv1D) model. 

ID MSE (deg) RMSE (deg) MAE (deg) R2 F1-Score Kapa 

41167 0.00160 0.04004 0.032304 0.9796 0.9667 0.9333 

From the data in Table 2, it can be seen that although the CNN (Conv1D) model has 

been constructed very well with the input data (as indicated by an R-squared value of 

97.96%), the values of RMSE and MAE are still very high.  Figures 2a-2c represent the 

values of the loss function, the predicted values on the training dataset, and the predicted 

values on the testing dataset with the CNN (Conv1D) model. 

 

3.2. Improving the Performance of the CNN (Conv1D) Model 

With the above prediction results, the requirements for location prediction at sea have 

not been met. To improve forecasting performance, the Adam optimizer was replaced with 

the SGD optimizer, and the corresponding loss function was changed to MSE. 

The Stochastic Gradient Descent (SGD) optimizer is a widely used algorithm for 

optimizing machine learning models, especially in neural networks. Unlike traditional 

gradient descent, which calculates gradients based on the entire dataset, SGD updates the 

model’s parameters using only a single or a small batch of samples at each step. This 

approach makes SGD computationally efficient, particularly when dealing with large 

datasets, as it reduces memory usage and speeds up the learning process. Although SGD may 

lead to more fluctuations during training, it often helps the model to escape local minima and 

achieve better generalization. With a learning rate adjustment, SGD can be highly effective 

for training deep learning models across various domains, including image and language 

processing tasks. 

The Mean Squared Error (MSE) loss function is a common metric for evaluating model 

performance in regression tasks. MSE calculates the average of the squared differences 

between predicted and actual values, emphasizing larger errors. This sensitivity to significant 

deviations makes MSE particularly useful for capturing the accuracy of continuous 

predictions. By penalizing larger errors more heavily, MSE encourages the model to produce 

closer estimates, making it a reliable choice in applications where precision is critical. 

To investigate the performance of the CNN (Conv1D) model in this case, the number of 

filters used in the hidden layer was 64, 128, and 256, respectively. The performance statistics 

of the model are presented in Table 3. 

(a) (b)

(c)

Figure 2. (a) Loss function plot of the CNN 

(Conv1D) model with the Adam optimizer, Huber 

loss, and 256 filters; (b) Predicted values on the 

training dataset of the CNN (Conv1D) model with the 

Adam optimizer, Huber loss, and 256 filters; (c) 

Predicted values on the testing dataset of the CNN 

(Conv1D) model with the Adam optimizer, Huber 

loss, and 256 filters. 
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Table 3. Performance of the CNN (Conv1D) model with the SGD optimizer, MSE loss function, and 

different numbers of filters in the hidden layer. 

Number of 

filters 
MSE (deg) 

RMSE 

(deg) 
MAE (deg) R2 F1-Score Kapa 

64 0.000102 0.010090 0.007981 0.9987 1.0 1.0 

128 0.000062 0.007863 0.006653 0.9992 1.0 1.0 

256 0.000060 0.007745 0.006890 0.9992 1.0 1.0 

From the data in Tables 2, 3, it can be seen that replacing the Adam optimizer with SGD 

and the Huber loss with MSE, using only 64 filters in the hidden layer, has improved the 

forecasting performance of the CNN (Conv1D) model. Accordingly, the RMSE value 

decreased by 4 times (from 0.04 to 0.01), and the MAE value similarly decreased by 4 times. 

Figures 3a-3c represent the values of the loss function, the predicted values on the 

training dataset, and the predicted values on the testing dataset with the CNN (Conv1D) 

model in the case of using the SGD optimizer, MSE loss function, and 64 filters in the hidden 

layer. 

 
Figures 3a-3c show that, even with only 64 filters in the hidden layer, using the SGD 

optimizer and MSE loss function leads to a rapid decrease in loss toward zero (around 5 

epochs compared to 75 epochs previously). Additionally, the CNN (Conv1D) model captures 

peaks more accurately when using the SGD and MSE functions, as reflected in the predicted 

values for both the training and testing datasets in Figures 3b, 3c. 

When increasing the number of filters from 64 to 128 or 256, the model's fit to the input 

dataset remains the same. In all cases, the R-squared value is approximately 100%. However, 

when increasing the number of filters from 64 to 128 in the hidden layer, the RMSE value 

decreases by approximately 20%, and the MAE value decreases by approximately 15%. 

When increasing the number of filters from 128 to 256 in the hidden layer, there is no 

significant change in the model’s performance metrics. In other words, using the CNN 

(Conv1D) model with the SGD optimizer and MSE loss function in this case, the optimal 

number of filters in the hidden layer is 128. 

The graphs showing the loss function values, predicted values on the training dataset, 

and predicted values on the testing dataset, using 128 filters in the hidden layer, are presented 

in Figures 4a-4c. Comparing the graphs for cases using 64 and 128 filters in the hidden layer 

shows that the loss function value remains nearly unchanged, but with 128 filters in the 

hidden layer, the predicted values align more closely with the actual values. 

(a) (b)

(c)

Figure 3. (a) Loss function of the CNN (Conv1D) 

model with the SGD optimizer, MSE loss function, 

and 64 filters in the hidden layer; (b) Predicted 

values on the training set of the CNN (Conv1D) 

model using the SGD function, MSE, and 64 filters 

in the hidden layer; (c) Predicted values on the 

training set of the CNN (Conv1D) model using the 

SGD function, MSE, and 64 filters in the hidden 

layer. 
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From the above results, it can be observed that although the performance metrics of the 

model, such as R-squared, Kappa, and F1-Score, reach absolute values, the prediction 

accuracy is still not high, as indicated by the relatively large RMSE value. This may be due 

to the limited data and the significant spatial (geographical range) and temporal variations. 

Further research with a larger dataset is needed to fully assess the effectiveness of artificial 

intelligence models in analyzing drifting buoy data. 

4. Conclusion  

The results of this study indicate that predicting the trajectory of drifting buoys is 

significantly important for maritime traffic, scientific research at sea, and search and rescue 

operations. These studies are particularly relevant in Vietnam, a country with over 1 million 

square kilometers of sea, where the East Sea has strategic significance in ensuring territorial 

sovereignty and economic development. 

Using the collected drifting buoy data, the research team developed a program to forecast 

the trajectory of drifting buoys utilizing the CNN (Conv1D) model. Experimental results 

show that by using the Adam optimizer, the Huber loss function, and 256 filters in the hidden 

layer, the forecasting performance achieved was RMSE = 0.04004 (degrees), MAE = 

0.032304, and R² = 97.96%. 

When the Adam optimizer was replaced with SGD, using the MSE loss function instead 

of the Huber loss function, just 64 filters in the hidden layer resulted in a forecasting 

performance four times higher, with statistical measures such as RMSE = 0.010090 (degrees) 

and MAE = 0.007981 (degrees). The fit between the model and the input data in this case 

was R² = 99.87%. 

Continuing with the SGD optimizer and the MSE loss function, but increasing the 

number of filters in the hidden layer to 128, the model's performance increased by 

approximately 20%, yielding RMSE = 0.007863 (degrees), MAE = 0.006653 (degrees), and 

R² = 99.92%. When the number of filters was raised to 256, the model’s performance did not 

change, indicating that the optimal number of filters in this experimental case is 128. 

With R² values in all cases approaching 100%, this demonstrates that the proposed CNN 

(Conv1D) model is highly suitable for predicting the trajectory of drifting buoys that changes 

in both space and time. However, with the RMSE results still being relatively high, this may 

be due to the input data not being sufficiently large. Future research should continue to 

(a)
(b)

(c)

Figure 4. (a) Loss function of the CNN (Conv1D) 

model with the SGD optimizer, MSE loss function, 

and 128 filters in the hidden layer; (b) Predicted 

values on the training set of the CNN (Conv1D) 

model using the SGD function, MSE, and 128 

filters in the hidden layer; (c) Predicted values on 

the testing set of the CNN (Conv1D) model using 

the SGD function, MSE, and 128 filters in the 

hidden layer. 
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experiment with the predictive performance of artificial intelligence models using larger 

input datasets. 
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