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Abstract: Flood forecasting is the main task to mitigate the damage caused by flooding in 

the Red River, Vietnam. Many reservoirs have been operating in the Red River to regulate 

flood. This research aims at developing a method for rapidly forecasting Hanoi’s water 

levels under various reservoir operation scenarios and river system conditions that will 

facilitate the assessment of multiple reservoir operation scenarios to provide effective and 

reliable real-time operational advice. A deep learning model based on the Transformer 

architecture was used to forecast the 24-hour lead time at Hanoi station. The dataset was 

divided into three subsets (Training set from 2015 to 2022, validation set in 2023 and Test 

set in 2024). The results showed that the Mean Absolute Error (MAE) was within an 

acceptable range, with MAE values of 24.1 cm, 26.1 cm, and 30.7 cm for the training, 

validation, and testing phases, respectively. The model demonstrated a significant ability to 

capture historical patterns and achieve high accuracy on the validation dataset, emphasizing 

the effectiveness of the Transformer architecture in forecasting water levels under normal 

conditions. Hydraulic models can be used to simulate additional data to improve the quality 

of flood forecasts for these extreme cases. 
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1. Introduction  

Flood forecasting is one of the most effective non-structural measures to mitigate the 

impacts of flooding. The Red River plays a crucial role in the socio-economic development 

of the Northern Delta region, home to the capital city of Hanoi, a cradle/center of Vietnam’s 

culture, politics and education. To ensure the safety of Hanoi and the Red River Delta, a 

system of dikes has been constructed along the river, along with large reservoirs upstream of 

the Da and Lo Rivers to regulate floods. 

Several studies reveal that the traditional flood forecasting approach in the Red River 

basin at Hanoi has been applied using hydrological-hydraulic models with reservoir operation 

models [1–4]. Hydrological models use forecasted precipitation data to generate forecasted 

runoff for sub-basins, which is then used to estimate flows at control points in the upstream 

basin. These control points are typically hydrological stations or reservoirs. The runoff is 

then routed to the main reservoirs using hydrological routing models. Reservoir operation 

models will calculate the released flow based on the reservoir operation scenarios. Finally, 

hydraulic models will simulate the downstream flow, accounting for tidal levels and 

interactions with adjacent river branches. 

Under the Red River inter-reservoir operation regulation 740/QĐ-TTg 2019 [5], seven 

reservoirs on the mainstream participate in flood regulation and control: Lai Chau, Son La, 
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Hoa Binh, Huoi Quang, Ban Chat, Thac Ba, and Tuyen Quang. Among these, the operational 

flows from the two main downstream reservoirs, Hoa Binh and Tuyen Quang, directly 

influence water levels in Hanoi. To provide real-time operational advice for this reservoir 

system, ensuring the safety of the structures and downstream areas, the outflows of reservoirs 

under different scenarios are linked to hydraulic models to simulate downstream flow. With 

this approach, it requires significant time for real-time forecasting, especially when 

considering multiple operational scenarios. 

Consequently, developing a method for rapid water level forecasting in Hanoi under 

various reservoir operation scenarios and river system conditions will facilitate the 

assessment of multiple reservoir operation scenarios, providing effective and reliable real-

time operational advice. 

Artificial intelligence (AI) technology has been advancing rapidly and is being 

successfully utilized in various practical fields. Several studies have employed AI-based 

approaches for flood forecasting [6–11]. The results of these studies show the potential 

applications of AI in flood management. In Vietnam, AI has been applied in flood forecasting 

for decades. Most of the studies used the popular AI algorithms [12–14] such as artificial 

neural networks, long-short-term memory (LSTM)… These models have good accuracy but 

still have some limitations, for example, ANN has difficulty in dealing with time series data 

[15], LSTM requires a large quantity of data [16] or is prone to overfitting [17].  

The Transformer is a neural network architecture designed to map input sequences to 

output sequences, first introduced in [18]. It offers significant advantages, including the self-

attention mechanism, which enables parallel computation and improves performance on long 

time-series tasks due to its extended memory capacity [19]. Researchers have applied 

successfully the Transformer model in flood forecasting in several basins in the world [20–

22].   

Therefore, the study objective is to use the Transformer model to forecast water levels 

in Hanoi with a 24-hour lead time. 

2. Methods and data 

2.1. Study area  

The Red - Thai Binh River basin, covering an area of 169,000 km², is the second-largest 

river basin in Vietnam after the Mekong River basin (Figure 1). In the Red River basin, many 

reservoir systems are operating to regulate flood control for downstream areas as well as 

provide water for different water requirements. Hanoi is located downstream in the Red River 

basin, below the confluence of its three main tributaries: the Da River, the Thao River, and 

the Lo River. Water levels in Hanoi are affected by upstream flows as well as the water levels 

of tributaries in the downstream area. 

2.2. Methodology  

In this section, the research introduces a deep learning model based on the Transformer 

architecture [23], designed to predict water levels in Hanoi for the next 48 hours (equivalent 

to the upcoming two days). The overview architecture of the proposed model is shown in 

Figure 2. This consists of several key components: a Time-Embedding block, two Encoder 

blocks, one for information from the hydrological stations and the other for data from the 

reservoirs, and a Decoder block to decode the information and predict the water levels at the 

upcoming time steps. 

The time-embedding block is used to encode the time information and inject temporal 

patterns into the model. It is typically done using sine and cosine functions, which help the 

model capture periodicity, such as daily or yearly cycles. Given a time step t, the Time-

Embedding for that time is calculated as follows: 
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where i is the dimension of the embedding (ranging from 0 to 
d

2
) and d is the total number 

of embedding dimensions. These embeddings allow the model to better understand and 

process temporal information, such as the day of the year and season, making it suitable for 

time-series prediction tasks such as water level forecasting. 

 

Figure 1. Map of the Red River Basin with main reservoirs. 

 

Figure 2. Pipeline of the Model for Predicting Water Levels in Hanoi. 
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The Encoder block is designed separately for each type of input data from the 

hydrological stations and the reservoirs because the length of the data varies between them. 

The architecture of the Encoders is designed with a combination of Positional Encoding [24] 

and stacked Transformer Encoder blocks. Unlike Time-Embedding, which encodes time 

information within a window of length 36, Positional Encoding encodes the temporal 

information specific to each time step in the sequence, allowing the model to learn 

relationships within a short time frame, such as the past week, to capture the temporal 

dependencies relevant for accurate forecasting. Following this, each Transformer Encoder 

block is designed with feed-forward networks (FFN) and multi-head self-attention layers 

(MHSA) to enrich the information from each hydrological station and reservoir at every time 

step. MHSA (Multi-Head Self-Attention) revolves around the attention mechanism with 

multiple heads, allowing the model to capture different aspects of relationships between time 

steps in the data. Each time step is processed with query, key, and value vectors to determine 

the attention weights between time steps. This process can be defined by the following 

formula: 

( )
T

k
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Attention Q,K,V soft max V

d

 
=  

 
 

                       (2) 

This enables the model to focus on key time steps, even if they are not adjacent, and 

learn long-range dependencies. FFN layers are applied after the attention mechanism to 

process and transform the information, adding the ability to capture non-linear relationships 

in the data. The FFN layers consist of two fully connected layers with a ReLU activation 

function, allowing the model to learn complex patterns in the time series data. 

The Decoder is responsible for synthesizing the information encoded from the 

hydrological stations and reservoirs through the two preceding Encoders. It is also designed 

with stacked Transformer Decoder blocks, which consist of feed-forward networks and 

cross-attention mechanisms. Cross-attention [18] allows the model to focus on the 

relationship between the hydrological stations and reservoirs, enabling it to effectively 

combine information from both sources. This helps the model learn how the data from two 

sources interact to make accurate predictions for future water levels. Additionally, an 

advanced mechanism, masked cross-attention [25], is employed to ensure that the model does 

not have access to future data during training. This mechanism prevents data leakage and 

ensures that the model learns to predict future water levels based only on the past and current 

information, maintaining the temporal integrity of the forecasting process. 

At the output stage, the Decoder produces the predicted water levels for future time steps, 

serving as the model’s forecast for the upcoming water levels in Ha Noi. To finalize the 

predictions, a post-processing step is conducted to convert the normalized outputs back to 

their original scale by reversing the normalization applied during preprocessing. This ensures 

the predictions are accurate, interpretable, and ready for practical use in water level 

forecasting. 

2.3. Data collection 

2.3.1. Hydrological Data 

Observed flow data from 2014 and earlier will not be used to avoid the impact of riverbed 

changes on water levels. Therefore, water level data from hydrological and primary tidal 

stations in the Red River system have been collected from 2015 to the present. 

In the Da River system, as the Hoa Binh Reservoir, located on the mainstream, plays an 

important role in regulating the flow, only the outflow data from the Hoa Binh Reservoir will 

represent flow information for the Da River branch. For the Thao River, data from the Lao 

Cai and Yen Bai stations provide information for this branch. In the Lo-Gam River system, 
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outflow data from the Tuyen Quang and Thac Ba reservoirs are utilized, along with water 

level data from stations at Ha Giang, Bac Me, Vinh Tuy, Ham Yen, and Vu Quang. In the 

lower sections of the Red and Thai Binh Rivers, several water level data in hydrological 

stations are also used. To ensure consistency, water level and flow data are recorded at 6-

hour intervals for all days from 2015 to September 2024. 

2.3.2. Data Pre-Processing  

The problem of water level forecasting for the upcoming days is approached by using 

historical water level data collected from 19 hydrological stations and three reservoirs. The 

data consists of observations recorded over nearly a decade, ranging from January 1, 2015, 

to September 28, 2024. Measurements were recorded four times daily at 1:00 AM, 7:00 AM, 

1:00 PM, and 7:00 PM, with water levels reported in centimetres relative to sea level. 

Prior to using the data for subsequent model training steps, preprocessing techniques are 

implemented to create a standardized dataset appropriate for the model. Since the data was 

collected in real-world conditions, errors, and missing values over the nearly 10-year 

recording period are unavoidable. Consequently, the data were selected based on their 

availability, quality, and impact on the predictor. 

After the preprocessing procedure, the data of 19 hydrological stations and three 

reservoirs were processed using interpolation techniques to fill in the gaps, ensuring that the 

dataset remains complete and continuous. This approach avoids disruptions in the analysis 

and model training process. Subsequently, the data was standardized using the standard 

normalization method, which scales all measured values to a common range, eliminating the 

impact of differing measurement units across locations. This ensures that no feature is 

disproportionately weighted during the model's learning process. Finally, the dataset was 

divided into three subsets: (1) Training set: Consists of data from January 1, 2015, to 

December 31, 2022; (2) Validation set: Contains data from January 1, 2023, to December 31, 

2023; (3) Test set: Includes data from January 1, 2024, to September 28, 2024. 

This partitioning ensures a clear separation of temporal phases, allowing the model to be 

trained on historical data while maintaining its ability to accurately predict unseen data. These 

preprocessing steps not only enhance the data quality but also lay a solid foundation for the 

entire model training and evaluation pipeline. 

With each dataset and four measurements per day, a sliding window of 36 timesteps 

(equivalent to 9 days) is applied to the dataset, generating data points for the model. This 

window is shifted with a step size of four timesteps (equivalent to one day) across the datasets 

to create data points. Within each window, the first 28 timesteps (equivalent to a week) are 

considered past data, and the last 8 timesteps (equivalent to two days) are considered future 

data. A total of eight data points is generated to predict the upcoming eight-time steps, 

corresponding to the next two days. Specifically, at time 𝑡, the data point used to predict the 

water level at future time t t+  has the following structure: 

Input: this combined water level data from 12 stations up to time 𝑡 and released discharge 

data from three reservoirs up to time t t.+  

- Data from stations consists only of passive data, which includes the first 28 

measurements (equivalent to a week) for each hydrological station within the window. In 

addition, each measurement includes its corresponding time step within the year and the 

specific month it was recorded. 

- Data from reservoirs consists of both passive and future data. This includes the first 28 

measurements from the past (equivalent to a week) and t from the future for each reservoir 

within the window. Along with this, the corresponding time steps relative to the year and the 

specific month information are provided for each measurement. 

Output: the target value is the water levels in Ha Noi and corresponding timestep in year, 

which need to be predicted for future time t t.+  
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3. Results 

3.1. Experimental Setup 

For the experiments in this research, we developed a deep learning model based on the 

Transformer architecture to forecast water levels in Ha Noi. To embed time and sequence 

information, we used different frequencies for specific embeddings: a frequency of 5000 for 

month embeddings, 10000 for time step embeddings within the year, and 1000 for positional 

encoding. This approach ensures the model effectively captures various temporal patterns 

and relationships in the data. For the stacking layers in the Encoder and Decoder, we selected 

two layers for each block, with each Multi-Head Self-Attention (MHSA) layer using four 

heads and a dimension of 64 for the model. During training, dropout was applied to prevent 

overfitting, and input data was augmented by masking portions of the data to help the model 

generalize better to unseen scenarios and avoid overfitting, ensuring robust and accurate 

predictions.  

In addition, the loss function used was mean squared error (MSE), while mean absolute 

error (MAE) was used as the evaluation metric. MSE is suitable for this problem as it 

penalizes large errors, prioritizing the minimization of critical prediction deviations, which 

is vital in water level forecasting. Meanwhile, MAE offers an intuitive measure of average 

error, less sensitive to outliers, ensuring a balanced and interpretable evaluation of model 

performance. There is also consideration given to the errors in extreme cases, ensuring the 

model remains robust under critical scenarios. This combination allows for effective training 

and practical evaluation relevant to real-world conditions. 

3.2. Experimental Results 

The results of the experiments show that the Transformer-based model can effectively 

learn the relationships in the data between the hydrological stations and reservoirs, while also 

capturing the temporal dependencies to make accurate predictions of the water levels in Ha 

Noi. The results of the training, validation, and testing processes are measured by the MAE 

(Mean Absolute Error) metric to represent the prediction error and are presented in Table 1. 

Table 1. Training Results of Transformer-Based AI Models 

Dataset Trainset Validation set Test set 

MAE (cm) 24.1 26.1 30.7 

The MAE metrics show that the model learns effectively on the training set and performs 

well on the validation set. On the training set, the mean deviation is 24.1 cm, while on the 

validation set, it is 26.1 cm, indicating that the error between the predicted and actual values 

is relatively low. This suggests that the model does not exhibit overfitting and is able to 

generalize well, understanding the characteristics of the data over time. However, the results 

on the test set are slightly higher (30.7 cm), but still promising. The model maintains good 

prediction capability, as the test set data corresponds to a year with more significant 

fluctuations due to the impact of natural disasters, such as Typhoon Yagi. Similar research 

using ANN and LSTM got the MAE around 10 cm but it is because of simulating instead of 

forecasting the water level at Hanoi, and daily data (smoother) instead of 6-hour data (strong 

variability) [14]. 

Water level forecasting in Hanoi is considered satisfactory if the forecast error is within 

20 cm (the acceptance error is estimated following the circular 22/2019/TT-BTNMT). 

Therefore, with an error range of approximately 24-30 cm, the results of rapid water level 

forecasting in Hanoi using the Transformer-based AI method are acceptable, especially 

considering the challenges posed by extreme events like Typhoon Yagi. This suggests that 
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the model performs well even in the presence of fluctuating and extreme conditions, making 

it suitable for real-world applications. 

 

Figure 3. Water level at Hanoi (observed and forecasted): (a) 2024, (b) 2023, (c) 2015-2022. 

(a)

(b)

(c)
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A closer inspection of the charts across the dataset illustrates that the forecasted values 

closely track the observed values for most of the time, especially during periods of low to 

moderate water level fluctuations (Figure 3). The model has demonstrated a strong ability to 

learn historical trends and maintain high accuracy on the validation set. This is clear evidence 

of the Transformer architecture’s effectiveness in forecasting water levels under normal 

conditions. Although the error is higher compared to the year 2023 (Figure 3b), the charts 

indicate that the model still tracks the overall trends in water levels and provides predictions 

that are close to the actual values. In particular, during periods of significant fluctuations, the 

model demonstrates a certain degree of adaptability, although there are still notable errors at 

some peak flood points. 

In Figure 3a, the flood peak error of the September 2024 flood event is approximately -

70 cm. This result can be explained by the fact that the flood in 2024 is much higher than the 

trained flood data in the past. Therefore, the test results are “extrapolated” values from the 

model’s training data. However, the Transformers method still describes the flood process 

well and predicts the flood peak error at an acceptable level. In order to improve the quality 

of flood forecasts for these extreme cases, hydraulic models can be used to simulate 

additional data. 

4. Conclusion 

The study developed a rapid water level forecasting model for Hanoi using the 

Transformer-Based AI model. The model employed observational water level data from 

hydrological stations located along the mainstem and downstream sections of the Red and 

Thai Binh River basins, alongside outflow data from the primary reservoirs of Hoa Binh, 

Tuyen Quang, and Thac Ba. To minimize the impact of riverbed changes on water levels, 

only measured data collected from 2015 onward were used in the study. 

The Transformer model was created using training data from 2015 to 2022, validated for 

2023, and tested for 2024. The results showed that the Mean Absolute Error (MAE) was 

within an acceptable range, with MAE values of 24.1 cm, 26.1 cm, and 30.7 cm for the 

training, validation, and testing phases, respectively. 

A thorough analysis of the dataset results reveals that the forecasted values align closely 

with the observed values for most of the time, particularly during periods of low to moderate 

water level fluctuations. The model has shown a strong capacity to capture historical patterns 

and maintain high accuracy on the validation set, highlighting the effectiveness of the 

Transformer architecture in forecasting water levels under normal conditions.  

To improve the quality of flood forecasts for these extreme cases, hydraulic models can 

be used to simulate additional data. 
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