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Abstract: The research employs the Quantile Mapping (QM) post-processing method to 

improve the skill forecasts of the deterministic forecast of the European Centre for Medium-

Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). The selected 

research areais Central Vietnam, and the analysis utilizes observation data from 41 stations and 

10-year ECMWF-IFS data from 2013 to 2022, with a lead time of up to 10 days for the QM 

applications. The findings indicate that the QM facilitates enhanced forecasting skills in the 

IFS model for all lead times up to 10 days, exhibiting varying magnitudes based on the specific 

lead time and rainfall thresholds. Notably, the impact of QM is found to be negligible for heavy 

rainfall events, with the skill limit being determined as insignificant for lead times up to 72 

hours in summer and 144 hours in winter.  

Keywords: Quantile Mapping; the European Centre for Medium-Range Weather Forecasts 

(ECMWF) Integrated Forecasting System (IFS); Skill precipitation forecast. 

____________________________________________________________________ 

1. Introduction 

Statistical evidence from the last two decades indicates that the substantial floods that 

occurred in November and December 1999 in Central Vietnam engulfed hundreds of villages, 

resulting in significant fatalities and substantial material losses. In 1999, within a period of just 

over one month (from 1 November to 6 December), two extremely heavy rainfall events 

occurred in most provinces of Central Vietnam, causing two rare floods in a substantial area. 

The consequences of these events were devastating, with over 700 fatalities, almost 500 injuries, 

and tens of thousands of households losing their homes and assets. The economic impact was 

estimated at almost 5,000 billion VND, far exceeding the level of damage that occurred in 1996. 

It is evident that the primary cause of these natural disasters in Central Vietnam is flooding, 

primarily triggered by heavy rain events. Consequently, the accurate prediction of precipitation 

in Central Vietnam is imperative for effective disaster prevention and mitigation strategies. In 

recent decades, the utilisation of rain forecast products derived from numerical weather forecast 
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systems, encompassing both deterministic and ensemble prediction methodologies, has become 

a prevalent component of daily operations on both global and regional scales. A substantial 

volume of applied research and development on rain forecast technologies for Central Vietnam 

has been undertaken over the past decade [1–5]. Findings of these studies have indicated that 

the rain forecast problem in Central Vietnam, particularly the heavy rain forecast, remains 

challenging and necessitates technological advancements to enhance the quality of forecasts and 

satisfy societal needs. 

To enhance the weather forecasting capabilities in Vietnam from a short to seasonal scale, 

the products and dataset of the globally integrated forecast system (IFS) of the European Centre 

for Medium-Range Weather Forecast (ECMWF) have been procured and utilised in daily 

operations at Vietnamese weather forecast offices from national to provincial levels. A number 

of studies have been conducted on the assessment of model skills, including the IFS model [3, 

6, 7]. These studies primarily focused on evaluating the skill in forecasting rainfall, and the 

findings revealed that both the validation of station-based and spatial-based models indicated a 

deficiency in their ability to predict high thresholds, such as heavy and very heavy rainfall, when 

it comes to 24-hour accumulated rainfall forecasts [7]. The IFS model has demonstrated superior 

forecasting capabilities in comparison to other models. However, it has been observed that all 

models underestimate the occurrence of extreme heavy rainfall events [3]. With regard to the 

forecast of rainfall quantity, the IFS model demonstrates proficiency for 24- to 48-hour lead 

times, though its efficacy is reduced at 72-hour lead times. Nonetheless, the IFS model exhibits 

competence in several instances of heavy rainfall [6]. 

Numerical weather prediction (NWP) models employ estimates and assumptions to predict 

future weather phenomena. Notwithstanding, these models are prone to certain drawbacks 

stemming from their structural design and parametrization. Such limitations can lead to less 

precise weather forecasts, which, in turn, can propagate errors into the forecasting system and, 

consequently, compromise the accuracy of rainfall forecasts [12]. A considerable number of 

studies have documented the effectiveness of statistical post-processing in improving the 

precision of weather forecasts. The implementation of weather post-processing methodologies 

entails the adjustment of the mean and variance of forecasts, thereby ensuring a more precise 

alignment with the distribution of observed data [13]. Statistical post-processing has emerged 

as a significant tool for reducing errors in deterministic and ensemble forecasts, given its 

computational efficiency and capacity to handle a large number of forecasts, encompassing all 

ensemble members and lead times [14]. The objective of statistical post-processing is to 

minimise simulation errors by adjusting model output based on observations. This methodology 

has been extensively utilised in climate research [14] and in the field of weather forecasting [15].  

In the field of atmospheric science, two distinct post-processing methodologies are 

employed. These post-processing methodologies frequently involve a process of downscaling. 

The first category comprises Perfect Prog methods, which entail the establishment of statistical 

correlations between observed predictors and observed predictands, subsequently applied to 

model output. The second category encompasses Model Output Statistics (MOS) methods, 

wherein links between simulated predictors and observed predictands are established. The 

former method is frequently employed to establish links between large-scale atmospheric states 

and local or regional meteorological variables, while the latter is predominantly utilised to link 

the same physical variables on analogous spatial scales. However, a moderate downscaling step 

is often incorporated into the approach. The context of weather forecasting, MOS is the preferred 

approach. 

Quantile mapping (QM) is the most commonly used MOS method for postprocessing 

weather forecasts [13, 16–18]. It involves adjusting the raw weather forecast so that it matches 

the distribution of the observations. QM improves the accuracy of the forecast by ensuring 

greater consistency with historical observations. It is considered to be one of the more flexible 

bias correction methods, which attempt to adjust the variance of the model distribution in order 
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to better match the observed variance [14]. In the context of post-processing of rainfall forecasts, 

the QM method involves the implementation of a quantile-specific correction factor to the 

forecast rainfall distribution. This ensures that the forecast aligns with the observed actual 

distribution. As demonstrated by [19], the QM technique effectively eliminates the systematic 

bias in the CFSv2 reforecasts. In a distinct study [20] conducted a comparative analysis of 

various downscaling and error correction methods. Their analysis concluded that the QM 

method exhibited the optimal performance for the purpose of daily precipitation estimation. In 

their seminal work [21] pioneered the evaluation of a post-processing technique for bias 

correction in four meteorological variables, namely, temperature, precipitation, relative 

humidity, and wind speed. Their findings signalled the efficacy of QM in mitigating biases, both 

annual and monthly, to almost undetectable levels for all variables, with precipitation exhibiting 

the most substantial enhancement. Precipitation is widely recognised as the input data with the 

greatest source of uncertainty [22–24]. 

The objective of this study is to enhance the precision of daily rainfall forecasts at all 

stations in Central Vietnam. To this end, the Quantile Mapping post-processing method is 

employed to refine the deterministic forecast of the IFS model provided by the ECMWF. The 

subsequent section delineates the study area and the methodologies employed to investigate this 

matter. Section 3 presents the obtained results, and finally, Section 4 provides concluding 

remarks. 

2. Data and methods 

2.1. Observational precipitation data and the ECMWF-IFS data 

The study area was selected is Central Vietnam, the area is 151.234 km² consisting of 14 

provinces. In the research, the authors utilise observation data from 41 stations in order to 

verify the model data. The spatial distribution of all local observations is illustrated in Figure 

1a, and the information of each station is presented in Table 1. Of these 41 stations, it is 

reported that only approximately 21 stations are reported to WMO every six hours.  

Regarding to the ECMWF-IFS data, wwith the license, ECMWF will send the raw 

limited domain data (covering Southeast Asia) to the National Center for Hydro-

Meteorological Forecasting’s (NCHMF) ftp-servers. The gridded data will be interpolated to 

station locations (Table1) for further processing. The efficacy of this technique is evaluated 

through the utilisation of 10-year multi-year from 2013-2022 with a lead time of up to 10 days. 

An additional validation for heavy rainfall events will be carried out and listed in Table 2. 

Table 1. Information about synoptic stations at Central Vietnam. 

Station Name Code Station Name Code 

Hoi Xuan 48842 Nam Dong 48/92 

Yen Dinh 48/67 Da Nang 48855 

Sam Son 48/68 Tam Ky 48/93 

Bai Thuong 48/69 Tra My 48/94 

Quynh Luu 48/77 Ly Son 48/85 

Do Luong 48/80 Quang Ngai 48863 

Hon Ngu 48/81 Ba To 48/95 

Vinh 48845 Hoai Nhon 48/96 

Huong Son 48/82 An Nhon 48864 

Ha Tinh 48846 Quy Nhon 48870 

Huong Khe 48/84 Son Hoa 48/97 

Hoanh Son 48/73 Tuy Hoa 48873 

Ky Anh 48/86 Nha Trang 48877 

Tuyen Hoa 48/87 Cam Ranh 48879 

Dong Hoi 48848 Song Tu Tay 48892 
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Station Name Code Station Name Code 

Ba Don 48847 Phan Rang 48890 

Con Co 48/89 Phan Thiet 48887 

Dong Ha 48849 La Gi 48888 

Khe Sanh 48/90 Phu Quy 48889 

Hue 48852 Phan Ri 48891 

A Luoi 48/91   

 

Figure 1. The spatial distribution of all synoptic stations in Central Vietnam. 

Table 2. Information of heavy rainfall events in Central Vienam in 2023. 

Index Period Reason caused heay rainfall Rainfall intensity 

1 14-16/02/2023 

 The combination of cold surges and 

the tropical easterly disturbances at 

the level of 850mb 

The accumulated rainfall is 

typically 60-120 mm, although in 

some locations it has been recorded 

to exceed 140 mm. 

2 10-12/05/2023 
The interaction between the 

monsoon trough and the cold surges 

The accumulated rainfall is 

typically 60-120 mm, although in 

some locations it has been recorded 

to exceed 150 mm. 

3 22-27/06/2023 
The combination of the trough and 

convergence at the level of 500mb 

The accumulated rainfall is 

typically 80-180 mm, although in 

some locations it has been recorded 

to exceed 200 mm. 
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Index Period Reason caused heay rainfall Rainfall intensity 

4 31/07-05/08/2023 
The combination of the trough and 

convergence at the level of 500mb 

The accumulated rainfall is 

typically 60-120 mm, although in 

some locations it has been recorded 

to exceed 130 mm. 

5 15-17/09/2023 
The interaction between the 

monsoon trough and the cold surges 

The accumulated rainfall is 

typically 70-130 mm, although in 

some locations it has been recorded 

to exceed 150 mm. 

6 24-29/09/2023 
The interaction between the ITCZ 

and the cold surges 

The accumulated rainfall in the 

North Centre is typically 300-500 

mm. 

The accumulated rainfall in the 

other area is typically 100-300 mm. 

7 11-18/10/2023 

The combination of cold surges and 

the tropical easterly disturbances at 

the upper level 

The accumulated rainfall is 

typically 300-500 mm. Although in 

some locations it has been recorded 

to exceed 1000 mm. 

8 23-24/10/2023 

The combination of cold surges and 

the tropical easterly disturbances at 

the upper level 

The accumulated rainfall is 

typically 100-200 mm. Although in 

some locations it has been recorded 

to exceed 300 mm. 

9 29-31/10/2023 

The combination of cold surges and 

the tropical easterly disturbances at 

the upper level 

The accumulated rainfall in the 

North Centre is typically 250-450 

mm. 

The accumulated rainfall in the 

other area is typically 70-150 mm. 

10 13-17/11/2023 

The combination of cold surges and 

the tropical easterly disturbances at 

the upper level 

The accumulated rainfall is 

typically 200-400 mm. Although in 

some locations it has been recorded 

to exceed 500 mm. 

11 25-26/11/2023 

The combination of cold surges and 

the tropical easterly disturbances at 

the upper level 

The accumulated rainfall is 

typically 60-120 mm. Although in 

some locations it has been recorded 

to exceed 130 mm. 

12 20-22/12/2023 
The combination of cold surges and 

the tropical depression  

The accumulated rainfall is 

typically 150-3000 mm. Although 

in some locations it has been 

recorded to exceed 500 mm. 

2.3. Quantile mapping post-processing method 

The present study employed the QM method (see equation 1) to post-process weather 

forecasts and precipitation forecasts. This method involves the application of a quantile-based 

transformation of distributions. Specifically, it entails replacing the quantile of the present-day 

simulated distribution with the corresponding quantile of the present-day observed distribution 

[14].  

( )( )f p p f

i,corr y x i,rawx qD pD x=                  (1) 

In the context of the given time series, denoted “x” _“I”, future simulations and derived 

measures are indicated with a superscript f. The quantile for a probability α of a distribution D 

is represented as qD(α), and is defined as the value which is exceeded with a probability 1 - α 

when sampling from the distribution. The probabilities corresponding to a given quantile qD(α) 

(i.e. the cumulative distribution function, CDF) are denoted as pD(q) = α. 

For illustration, consider a station with 3,652 days of calibration data (10 years) and 365 

days of validation data. In this scenario, each day includes a 10-day precipitation forecast by the 

IFS model with a 24-hour time step. Consequently, each day's data can be represented as a vector 

of length 10, and the vector of length 3,6520 for the entire calibration period. The calculation of 

100 quantiles, both for observed and forecasted precipitation, results in two matrices: one for 
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observed quantiles (qDobs) and one for simulated quantiles (qDcal), for each of the 10 lead-

times. The correction factor (quantilecorr) for each quantile is subsequently determined using 

the following equation: 

obs
corr

cal

qD
quantile

qD
=       (2) 

The aforementioned procedure is then repeated for all ten-time steps, thereby resulting in a 

[100 × 10] matrix of correction factors. The total number of correction factors is thus equal to 

1,000. The member-quantile assignment is executed in the following manner: In the event that 

the precipitation forecast from the IFS model exceeds the last quantile, it is allocated to the 100th 

quantile. Conversely, if the precipitation forecast from the IFS model corresponds to an existing 

quantile, it is assigned accordingly. Finally, in the event that the precipitation forecast from the 

IFS model does not precisely align with a quantile, it is assigned to the subsequent quantile. The 

quantile mapping correction is achieved by multiplying the direct forecast precipitation value 

from the IFS by the appropriate correction factor. 

valcorr val corrx x quantile=        (3) 

where xvalcorr is the corrected forecast value from IFS model, xval is the forecast value from 

IFS model in the validation period, and quantilecorr is the quantile function probability of the 

observed distribution and simulated calibration period.  

The correction factor is calculated independently for each quantile forecast, ensuring 

accurate adjustment of the entire forecast distribution [18, 25, 26]. Extensive research has 

demonstrated the efficacy of quantile-based post-processing methodologies (e.g., QM method) 

in enhancing the accuracy of rainfall forecasts, particularly concerning extreme rainfall events 

[18, 25, 26]. Despite the abundance of methods available for correcting bias in meteorological 

and hydrological forecasts [27, 28]. this study selected the QM correction method. This 

approach was selected due to the predominance of the QM correction method within the 

scientific community as the prevailing technique for precipitation forecast bias correction [29–

33]. The QM method was applied in two distinct temporal configurations, which are outlined 

below. 

1. Seasonal QM: The first configuration, designated as “seasonal QM”, entails the 

implementation of the QM method in precipitation forecasts, meticulously grouped by season. 

The seasonal distribution of raw precipitation forecasts for each lead time is meticulously 

calibrated to mirror the seasonal distribution of observed precipitation (summer season: April-

September; winter season: October-March). 

2. Annual QM: The second configuration, termed “annual QM”, involves the concurrent 

application of the QM method to all precipitation forecasts. The annual distribution of raw 

precipitation forecasts for each lead time is adjusted to match the yearly distribution of the 

observed precipitation. 

In order to validate the effectiveness of the QM method, the approach will be implemented 

in two distinct periods and the results will be compared with the forecasts derived from the IFS 

model. The calibration period encompasses the years from 2013 to 2022, while the validation 

period is scheduled for 2023. Additionally, the performance of the QM method in the 2023 

heavy event will be examined. The application of the QM to different temporal configurations 

(i.e., seasonal and annual) enables the evaluation of the performance of the post-processing 

method at different temporal scales and the determination of the most appropriate configuration 

for precipitation forecasting.In the context of this study, the distinct seasonality of rainfall in 

Central Vietnam is a salient feature, and the QM method with seasonal configuration 

predominance the annual configuration in providing the precipitation forecast. Consequently, 

the subsequent section will focus exclusively on the results derived from the QM method with 

a seasonal configuration. 
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3. Results 

3.1. Evaluation in the year of 2023 

In this section, we will evaluate the skill score of the IFS model and the IFS model applied 

the QM method for post-processing on forecasting rainfall in 2023, will the lead-time up to 10 

days. We will use skill score TS (range from 0-1, best score at 1) and metric score RMSE (range 

from 0 to infinite, best score at 0) to validate the results [6, 7]. 

Tables 3 and 4 present the findings of the TS index skill IFS model and the IFS model 

applied the QM method in the summer and winter season of 2023 inCentral Vietnam for all 

ranges with a lead time of up to 10 days. It is evident that as the TS value increases, the QM 

method demonstrates its capacity to enhance the PQF, surpassing the direct forecasts from the 

IFS model across all precipitation ranges. During the summer season, when the threshold for 

heavy rainfall is set at 50-100 mm, the TS skill score undergoes a substantial decline after 72 

hours, from 0.08 to 0.03 (using the IFS-applied QM method) and 0.07 to 0.02 (using the IFS 

model). In the winter season, when the threshold for heavy rainfall is set at 50-100 mm, the TS 

skill score experiences a sudden decline after 144 hours, from 0.13 to 0.08 (when the IFS QM 

method is applied) and from 0.10 to 0.06 (when the IFS model is employed. These findings 

highlight the IFS model's inadequacies in accurately capturing heavy rainfall with a lead time 

of up to six days in winter and three days in summer, despite the application of advanced 

postprocessing methods such as QM. 

Table 5 provides more evidence about the performance of the IFS model and the IFS model 

applied QM method for post-processing through the RMSE index of all models in the summer 

and winter season of 2023 inCentral Vietnam. It is evident that the QM method enhances the 

precipitation forecast skill of the IFS model over Central Vietnam, as evidenced by the reduced 

value of the RMSE index in comparison to the direct forecast from the IFS model for all lead-

times in both summer and winter seasons. Conversely, with TS skill score, The RMSE in winter 

is substantially greater than the RMSE in summer.  Furthermore, the findings in Table 4 reveal 

a substantial increase in the RMSE index after 120 hours of lead time in winter and 144 hours 

of lead time in summer.  

The QM method has been shown to enhance the forecasting skill of the FS model for all 

lead times up to 10 days. However, in the case of heavy rainfall categories, the impact of QM is 

negligible for lead times up to 72 hours in summer and 144 hours in winter. 

Table 3. The TS index skill of the IFS model and IFS model applied the QM method in the summer 

of 2023 in Central Vietnam. 

Lead time 0.1-  5mm 5-10mm 10-15mm 15-25mm 25-50mm 50-100mm 

Model QM IFS QM IFS QM IFS QM IFS QM IFS QM IFS 

24 0.18 0.17 0.07 0.07 0.07 0.06 0.08 0.07 0.10 0.08 0.09 0.08 

48 0.19 0.17 0.07 0.06 0.05 0.04 0.08 0.06 0.10 0.08 0.08 0.07 

72 0.17 0.17 0.07 0.06 0.05 0.03 0.08 0.07 0.10 0.09 0.03 0.02 

96 0.18 0.17 0.08 0.06 0.04 0.03 0.06 0.06 0.09 0.07 0.03 0.02 

120 0.18 0.17 0.08 0.06 0.04 0.04 0.06 0.04 0.10 0.09 0.03 0.02 

144 0.17 0.17 0.06 0.04 0.05 0.04 0.06 0.05 0.08 0.04 0.03 0.02 

168 0.18 0.17 0.06 0.06 0.05 0.04 0.05 0.03 0.09 0.06 0.02 0.01 

192 0.18 0.16 0.06 0.05 0.03 0.03 0.05 0.04 0.08 0.06 0.04 0.03 

216 0.18 0.16 0.06 0.05 0.03 0.03 0.05 0.04 0.08 0.05 0.04 0.03 

240 0.18 0.16 0.06 0.04 0.03 0.02 0.05 0.04 0.06 0.05 0.0 0.0 

Table 4. The TS index skill of the IFS model and IFS model applied the QM method in the winter 

of 2023 in CentralVietnam. 

Lead time 0.1-  5mm 5-10mm 10-15mm 15-25mm 25-50mm 50-100mm 

Model QM IFS QM IFS QM IFS QM IFS QM IFS QM IFS 

24 0.31 0.27 0.10 0.09 0.08 0.06 0.12 0.10 0.18 0.14 0.14 0.12 

48 0.30 0.26 0.12 0.09 0.08 0.06 0.12 0.10 0.12 0.09 0.16 0.14 
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Lead time 0.1-  5mm 5-10mm 10-15mm 15-25mm 25-50mm 50-100mm 

Model QM IFS QM IFS QM IFS QM IFS QM IFS QM IFS 

72 0.28 0.25 0.11 0.09 0.06 0.04 0.11 0.09 0.12 0.11 0.14 0.11 

96 0.27 0.26 0.10 0.09 0.06 0.04 0.10 0.08 0.10 0.08 0.14 0.10 

120 0.27 0.25 0.10 0.08 0.06 0.04 0.10 0.07 0.10 0.08 0.13 0.10 

144 0.27 0.24 0.10 0.08 0.06 0.05 0.10 0.09 0.10 0.08 0.08 0.06 

168 0.27 0.25 0.10 0.08 0.06 0.04 0.11 0.06 0.11 0.09 0.09 0.07 

192 0.26 0.25 0.09 0.07 0.06 0.04 0.10 0.07 0.09 0.07 0.06 0.04 

216 0.26 0.25 0.08 0.07 0.04 0.02 0.07 0.05 0.09 0.08 0.10 0.08 

240 0.25 0.23 0.07 0.05 0.05 0.03 0.07 0.06 0.09 0.08 0.04 0.04 

Table 5. The RMSE index of the IFS model and IFS model applied the QM method in the summer 

and winter of 2023 in CentralVietnam. 

Leadtime Summer 2023 Winter 2023 

Model QM IFS QM IFS 

24 14.50 14.69 20.18 20.08 

48 15.00 15.30 21.00 21.22 

72 15.30 15.49 19.90 22.05 

96 16.10 16.40 19.85 22.17 

120 17.10 17.35 22.55 22.78 

144 17.70 17.97 23.70 23.93 

168 20.40 20.56 23.50 23.72 

192 20.50 20.82 24.40 24.58 

216 19.60 19.83 24.75 24.98 

240 20.50 20.84 24.85 25.03 

3.2. Evaluation in the heavy rainfall events in 2023 

In this section, we will evaluate the skill score of the IFS model and the IFS model applied 

the QM method for post-processing on forecasting rainfall in all heavy rainfall events in 2023. 

According to the result in Table 6, The IFS model applied the QM method demonstrated 

superior performance in terms of the RMSE index when compared to the direct forecast from 

the IFS model, with a smaller value, for all lead times up to 10 days. The RMSE index in heavy 

rainfall events from both the IFS model and the IFS model applied QM method is substantially 

greater than the RMSE index in both summer and winter seasons 2023. The RMSE index 

increases with increasing lead time. These findings substantiate the limitations of global models, 

such as the IFS, in accurately capturing QPF at stations during heavy rainfall events, even when 

employing advanced postprocessing methods like QM. 

Table 6. RMSE index of the IFS model and IFS model applied the QM method in the heavy rainfall 

events of 2023 in Central Vietnam. 

Leadtime Summer 2023 Leadtime Winter 2023 

Model QM IFS Model QM IFS 

24 35.03 35.39 144 43.43 43.95 

48 38.35 38.67 168 44.24 44.75 

72 39.59 39.90 192 46.80 46.90 

96 41.75 42.18 216 46.69 46.87 

120 42.20 42.60 240 45.16 45.40 

In regard to the TS skill index in Table 7, analogous to the RMSE, the findings from the 

IFS model employing the QM method displayed superior performance in comparison to the 

direct IFS model outcomes for both medium rainfall (25-50 mm) and heavy rainfall (50-100 

mm) categories, across all lead times up to 10 days, as indicated by elevated TS values. 

However, for heavy rainfall category, the findings from Table 6 indicate a sudden decrease in 
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the TS skill index after 72 hours of lead time. These results underscore the IFS model’s 

limitations in accurately capturing rainfall with a lead time of up to 72 hours, in spite of the 

implementation of advanced postprocessing methods such as QM. 

Table 7. The TS skill index of the IFS model and IFS model applied the QM method in the heavy 

rainfall events of 2023 in Central Vietnam. 

Lead time 25-50mm 50-100mm 

Model QM IFS QM IFS 

24 0.14 0.13 0.15 0.14 

48 0.12 0.10 0.13 0.13 

72 0.13 0.12 0.07 0.06 

96 0.10 0.09 0.05 0.05 

120 0.12 0.11 0.05 0.04 

144 0.09 0.08 0.04 0.04 

168 0.10 0.09 0.05 0.05 

192 0.10 0.10 0.02 0.02 

216 0.10 0.09 0.06 0.05 

240 0.08 0.08 0.02 0.01 

4. Conclusion 

The objective of this study is to examine the efficacy of the QM method in enhancing the 

PQF forecast from IFS model across all synoptic stations in Central Vietnam. The research 

design is predicated on the utilization of observational data from 41 stations and 10-year 

ECMWF-IFS forecast data from 2013 to 2022, with a lead time of up to 10 days. The validation 

process, encompassing both skill and metric verifications, was conducted for the year 2023. 

The findings indicated that the incorporation of QM method has a positive impact on the 

forecasting skill of the IFS model for all lead times up to 10 days. However, the magnitude of 

this impact varies based on the lead time and rainfall categories. Additionally, it must be 

acknowledged that QM is not a flawless method; it has been evidenced that the impact of QM 

is negligible for lead times up to 72 hours in summer and 144 hours in winter, as demonstrated 

in the context of heavy rainfall categories forecasting. 

In the subsequent phase of the investigation, the integration of QM with Machine Learning 

(ML) and Deep Learning (DL) techniques is proposed to enhance the BIAS removal capacity 

of QM. 
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