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Abstract: Land cover classification using remote sensing data plays a crucial role in resource 

management and environmental monitoring. This study compares the performance of Random 

Forest (RF) and Extreme Gradient Boosting (XGBoost) in land cover classification in Van Yen 

District, Yen Bai Province, Vietnam. The input data includes Sentinel-1 radar images, Sentinel-

2 optical images, and a total of 7,214 sample points collected for model development using the 

Google Colab platform. The results indicate that both RF and XGBoost achieve high 

performance, with overall accuracy (OA) ranging from 94.8% to 96.3% and Kappa coefficients 

between 0.936 and 0.955. Notably, RF demonstrates greater stability and higher accuracy than 

XGBoost in both scenarios: using Sentinel-2 alone and combining Sentinel-2 with Sentinel-1. 

This study provides a scientific basis for selecting appropriate algorithms and data to improve 

land cover classification efficiency in the region. 
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____________________________________________________________________ 

1. Introduction 

Monitoring and classifying land cover is one of the key applications of remote sensing and 

geographic information systems technologies, providing essential information for resource 

conservation, environmental management, and sustainable development [1–4]. The 

advancement of remote sensing technology and artificial intelligence has significantly 

improved the accuracy and practical applicability of land cover classification methods [3–5]. 

Numerous studies worldwide and in Vietnam have applied machine learning approaches 

to develop land cover classification models using remote sensing data. Among these 

approaches, ensemble models have proven effective in remote sensing image processing for 

various applications [6–8]. This technique combines multiple weaker machine learning models 

into a stronger one, reducing overfitting and enhancing classification performance. Ensemble 

learning commonly employs two techniques: Bagging (Bootstrap Aggregating) and Boosting. 

Previous studies have demonstrated the advantages of these methods in land cover 

classification tasks [9–11]. 

Among ensemble learning algorithms, Random Forest (RF) represents the Bagging 

approach, whereas Extreme Gradient Boosting (XGBoost) is a leading example of the Boosting 

technique. Both are highly regarded for their ability to handle complex data and their stability, 

particularly in land cover classification problems [6]. Although studies using remote sensing 

imagery and machine learning models for land cover mapping in Vietnam have made 

significant progress in recent years, there are still few studies conducted in the northern 
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mountainous region of Vietnam, where the terrain is complex and land cover types are highly 

mixed [9–14]. Moreover, there has been no comprehensive study comparing the effectiveness 

of RF and XGBoost for land cover classification in this region. 

This study aims to compare the performance of RF and XGBoost in land cover 

classification using different remote sensing datasets. Van Yen district, a mountainous region 

in northern Vietnam with diverse terrain and land cover characteristics, was chosen as the study 

area. The findings will support the selection of suitable methods and datasets for land cover 

classification in the region while also providing a scientific basis for future research and 

applications in resource management and land cover monitoring. 

2. Materials and Methods 

2.1. Study area 

Van Yen is a district in the northwest of Yen Bai province, located between 21º40’00” and 

22º12’00” north latitude and 104º18’00” to 104º48’00” east longitude (Figure 1). The district 

shares its eastern boundary with Luc Yen and Yen Binh, while it is bordered by Van Chan to 

the west, Tran Yen to the south, and Van Ban and Bao Yen of Lao Cai province to the north. 

Covering a total natural area of 1,391.54 km², Van Yen is situated approximately 40 km north 

of Yen Bai’s provincial center. The district comprises 24 communes and one town. Mau A town 

serves as the district’s economic, political, cultural, and social center, strategically positioned 

along major transportation routes such as the Yen Bai - Lao Cai railway and the Noi Bai - Lao 

Cai expressway, fostering economic and social development while ensuring national defense 

and security [18]. 

The land cover characteristics of Van Yen are distinctly differentiated across its economic 

zones and natural landscapes. One of its most notable features is the dominance of forest and 

vegetation cover, particularly in highland communes and cinnamon-growing areas. Natural and 

plantation forests play a crucial role in environmental protection, ecosystem stability, and soil 

erosion prevention. Communes such as Phong Du Thuong, Xuan Tam, and Phong Du Ha have 

extensive cinnamon plantations, contributing to the local economy and forming a unique 

vegetation cover in the region. Van Yen experiences a high annual frequency of natural 

disasters, including landslides and floods. These events negatively impact land cover changes 

in the region, emphasizing the need for continuous land cover monitoring to ensure sustainable 

Figure 1. The study area in Van Yen district, Yen Bai province, Vietnam. 
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development. Additionally, the expansion of transportation networks and residential areas along 

the Red River and its tributaries in recent years has significantly altered the district’s land cover 

characteristics [19].  

2.2. Data collection 

2.2.1. Remote sensing images 

Sentinel is an Earth observation satellite program under The Copernicus program 

managed by ESA (European Space Agency), providing free data for environmental 

monitoring, resource management, and disaster prevention. Sentinel-1 utilizes C-band SAR 

(Synthetic Aperture Radar) technology, capturing day and night, all-weather, cloud-

penetrating data offering spatial resolutions between 10 meters and 40 meters. It acquires 

different polarization combinations, such as VV and VH for land areas and HH and HV for 

maritime, ice, and snow regions. Sentinel-1 data have proven effective in monitoring floods, 

land subsidence, surface deformation, and ship tracking [20]. 

Sentinel-2 collects multispectral optical images across thirteen spectral bands spanning 

the visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) regions. With a spatial 

resolution of up to 10m and a 5-day revisit cycle, Sentinel-2 is highly effective in monitoring 

vegetation, agriculture, water quality, wildfires, and land surface changes. Sentinel-1 

provides cloud-penetrating radar data, capturing surface structure and moisture, while 

Sentinel-2 offers multispectral information for distinguishing land cover types. The 

integration of these complementary datasets harnesses their combined strengths to enhance 

classification accuracy, particularly in regions with complex terrain and heterogeneous land 

cover [21, 22]. Cloud masks are applied to select Sentinel-2 optical images with cloud cover 

below 10% and to remove pixels with extremely low reflectance values (< -30 dB) to reduce 

noise in Sentinel-1 imagery [21]. This study utilizes Sentinel data from 2022 for the study 

area, including VV and VH polarizations from Sentinel-1, and selected spectral bands from 

Sentinel-2: visible bands (2, 3, 4), NIR band (8), and SWIR bands (11, 12), with spatial 

resolutions of 10m and 20m [20]. 

2.2.2. Sample data 

Table 1. Classification and description of characteristic land cover in the study area. 

No. 
Land Cover 

Type 
Code Description 

Total 

sample 

1 Forest FO 
Distributed in high mountainous areas, dark green, 

homogeneous. 
940 

2 
Non-Forest 

Vegetation 
VE 

Light green or non-uniform green, or divided into 

large plots. 
868 

3 Bare Land BA 
Yellow, white, or light brown with high 

brightness. 

1932 

 

4 Built-Up BU 
White, light pink, or red, unevenly distributed in 

clusters in favorable terrain. 
1413 

5 Paddy Fields RI 
Green or brown depending on the season, divided 

into plots or distinct terraces. 
717 

6 Water WA 
Gray or blue, homogeneous, appearing in linear or 

area forms such as ponds and reservoirs. 
1344 

The study selected sample points from a 2022 field survey in accessible and stable areas, 

such as residential zones and paddy fields. Additionally, image interpretation was conducted 

using true-color composite images and Google Earth data captured at the same time as the 

remote sensing images. A total of 7,214 samples were collected, with 4,266 samples used for 
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training the model and 2,948 samples for accuracy assessment. Table 1 presents the sample 

data properties and the land cover classification system for the study area. 

2.3. Calculation of spectral indices 

The study utilizes spectral indices computed from the original bands of Sentinel-2 

images. These spectral index layers are then stacked with Sentinel-1 and Sentinel-2 data 

layers for classification modeling (Figure 2). 

- Normalized Difference Vegetation Index (NDVI): 

NDVI is commonly applied spectral index for monitoring vegetation cover density under 

many conditions, based on the difference in spectral reflectance between the Red and Near-

Infrared bands in vegetation [23]. It is calculated based on the Red and NIR bands, following 

the equation (1): 

( )

( )

NIR Red
NDVI

NIR Red

−
=

+
     (1) 

where NIR corresponds to Band 8 and Red corresponds to Band 4 of Sentinel-2 imagery. 

- Normalized Difference Built-up Index (NDBI): 

NDBI is a spectral index that enables high-accuracy mapping of built-up areas from 

optical satellite imagery, based on the differing reflectance properties of the Near-Infrared 

and Shortwave Infrared bands [24]. The NDBI equation (2) is: 

( )

( )

SWIR NIR
NDBI

SWIR NIR

−
=

+
     (2) 

where SWIR corresponds to Band 11 and NIR corresponds to Band 8 of Sentinel-2 

imagery. 

- Modified Bare Soil Index (MBI): 

MBI is designed to differentiate bare soil, built-up land, and vegetation by analyzing 

reflectance in the NIR, SWIR1, and SWIR2 bands. This index provides a basis for 

distinguishing bare soil from other land cover types. It has been applied using Sentinel-2 

spectral bands and has shown promising results in separating bare land from urban areas [25]. 

The MBI equation (3) is: 

( )

( )

SWIR1 SWIR2 NIR
MBI f

SWIR1 SWIR2 NIR

− −
= +

+ +
    (3) 

In this formula, SWIR1 refers to Band 11, SWIR2 to Band 12, and NIR to Band 8 of 

Sentinel-2 imagery, and f is an adjustment factor (f = 0.5). 

 

Figure 2. A flowchart of the study structure. 
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2.4. Machine leaning models 

This study develops a land cover classification model using two machine learning 

techniques: Random Forest (RF) and Extreme Gradient Boosting (XGBoost), with each 

model comprising 100 decision trees. These models represent two distinct ensemble learning 

techniques. The classification model was implemented using the scikit-learn and XGBoost 

libraries on the Google Colab platform, applying different data combinations, including 

Sentinel-2 multispectral imagery and fused of Sentinel-2 and Sentinel-1 data (Table 2). 

2.4.1. Random Forest (RF) 

RF is a highly effective ensemble learning algorithm for classification tasks. It operates 

by constructing numerous decision trees using randomly sampled subsets of the training data, 

following the bagging technique. A key feature of RF is that the decision trees are trained 

independently and in parallel. The final classification result is determined through majority 

voting among the individual trees [26]. 

2.4.2. Extreme Gradient Boosting (XGBoost) 

Among ensemble learning algorithms, XGBoost is recognized as a powerful Boosting 

technique. It builds a predictive model by iteratively combining less accurate decision trees, 

enhancing performance by reducing the loss function through gradient descent. XGBoost can 

be applied to both regression and classification tasks [27]. While RF employs Bagging by 

constructing independent decision trees and aggregating results through majority voting, 

XGBoost adopts a sequential learning process, where each tree is built to minimize the errors 

of the previous ones. 

Table 2. Data and model used in the study. 

No. Code Data Model 

1 Case 1 (C1) Sentinel-2 RF 

2 Case 2 (C2) Sentinel-2 XGBoost 

3 Case 3 (C3) Sentinel-1, Sentinel-2 RF 

4 Case 4 (C4) Sentinel-1, Sentinel-2 XGBoost 

2.5. Accuracy assessment 

This study employs overall accuracy (OA), the Kappa coefficient, User’s accuracy (UA), 

and Producer’s accuracy (PA) to evaluate the classification model's performance [28]. 

Overall accuracy (OA) represents the proportion of correctly classified samples across the 

entire model, calculated as follows: 

OA =
Number of correct predictions × 100%

Total number of predictions
 (4) 

The Kappa coefficient evaluates the consistency between model predictions and actual 

values while accounting for the possibility of random agreement. The coefficient ranges from 

0 to 1, with higher scores reflecting better classification accuracy. The Kappa coefficient is 

calculated using the following formula: 

o e

e

P P
Kappa

1 P

−
=

−
      (4) 

where Po is the percentage of correctly classified samples; Pe is the proportion of chance 

agreement. 

User’s accuracy (UA) indicates the probability that a sample assigned to a particular 

class truly belongs to that class. Producer’s accuracy (PA) represents the proportion of actual 

class samples that have been correctly classified. A high UA suggests that users can rely on 

the classification results for that class, whereas a high PA indicates that most samples 
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belonging to that class have been correctly identified. UA and PA are computed using the 

following formulas:  

UA =
Number correctly identified in a given map class

Number claimed to be in that map class
 (6) 

𝑃A =
Number correctly identified in a given map class

Number actually in that reference class
 (7) 

3. Results and Discussion 

3.1. Model accuracy assessment 

The research results indicate strong performance of both RF and XGBoost machine 

learning models in land cover classifying land cover based on Sentinel-1 and Sentinel-2 

satellite data. Overall, the tested models achieved high accuracy, with overall accuracy (OA) 

ranging from 94.8% to 96.3%, and Kappa coefficients between 0.936 and 0.955. Among the 

models, RF exhibited, RF demonstrated greater stability and higher accuracy than XGBoost 

in both data scenarios. Additionally, classification accuracy improved when combining 

Sentinel-2 multispectral imagery with Sentinel-1 radar observations. 

Table 3. Accuracy assessment results of model C1. 

 

 
 

 

 

 

 

 

 

 

 

 

Table 4. Accuracy assessment results of model C2. 

Confusion Matrix Accuracy 

  BU WA FO VE BA RI UA PA 

BU 162 0 0 1 5 1 0.6353 0.959 

WA 0 604 0 0 0 0 1 1 

FO 0 0 617 0 0 0 1 1 

VE 10 0 0 583 6 13 0.9983 0.953 

BA 83 0 0 0 306 0 0.9653 0.787 

RI 0 0 0 0 0 557 0.9755 1 

OA =96.0% and Kappa = 0.951 

The models exhibited stable classification performance for water (WA), forest (FO), 

non-forest vegetation (VE), and paddy fields (RI), with user accuracy (UA) and producer 

accuracy (PA) values approaching or reaching 1 in all four cases. However, the classification 

accuracy of built-up (BU) and bare land (BA) was lower than for other land cover classes. 

This is due to the spectral similarity between these two land cover types. Furthermore, the 

shortwave infrared (SWIR) bands of Sentinel-2 have a resolution of 20 meters, which is 

relatively low, while these bands are primarily used for classifying BU and BA. Adding 

indices beyond NDBI and MBI or integrating higher-resolution data could be a promising 

approach to further improve the accuracy of these subclasses [26, 27]. RF outperformed 

XGBoost in both single Sentinel-2 data and the combined Sentinel-1 and Sentinel-2 dataset. 

Confusion Matrix Accuracy 

  BU WA FO VE BA RI UA PA 

BU 165 0 0 0 2 2 0.604 0.976 

WA 0 604 0 0 0 0 1 1 

FO 0 0 617 0 0 0 1 1 

VE 11 0 0 600 0 1 1 0.980 

BA 97 0 0 0 292 0 0.993 0.751 

RI 0 0 0 0 0 557 0.995 1 

OA = 96.2% and Kappa = 0.953 
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Moreover, RF improved classification accuracy for challenging classes such as BU, VE, and 

BA when integrating both data sources. 

Table 5. Accuracy assessment results of model C3. 

Confusion Matrix Accuracy 

  BU WA FO VE BA RI UA PA 

BU 162 0 0 0 5 2 0.6231 0.959 

WA 0 604 0 0 0 0 1 1 

FO 0 0 617 0 0 0 1 1 

VE 16 0 0 592 0 4 1 0.967 

BA 82 0 0 0 307 0 0.984 0.789 

RI 0 0 0 0 0 557 0.9893 1 

OA = 96.3% and Kappa = 0.955 

Table 6. Accuracy assessment results of model C4. 

Confusion Matrix Accuracy 

  BU WA FO VE BA RI UA PA 

BU 157 0 0 1 9 2 0.6181 0.929 

WA 0 604 0 0 0 0 1 1 

FO 0 0 617 0 0 0 1 1 

VE 6 0 0 566 5 35 0.9895 0.925 

BA 91 0 0 5 293 0 0.9544 0.753 

RI 0 0 0 0 0 557 0.9377 1 

OA = 94.8% and Kappa = 0.936 

Among the four test scenarios, Case 3 (RF model with Sentinel-1 and Sentinel-2 

combined) was the most optimal, achieving the highest overall accuracy (96.3%) and the 

highest Kappa coefficient (0.955). The findings highlight that using Sentinel-1 radar 

observations with Sentinel-2 multispectral imagery enhances land cover classification 

accuracy when using the RF model. This research underscores the usefulness for 

demonstrating the effectiveness of applying ensemble learning models and high-resolution 

satellite imagery in land cover classification in the Northern mountainous region of Vietnam. 

Although certain classification results have been achieved, limitations regarding artificial 

land cover classes will pose challenges when applying the approach to areas with complex 

urban cover. 

3.2. Land cover map of study area 

Based on the most accurate model (C3), a land cover map of Van Yen District was 

established (Figure 3). The results highlight that vegetation and forest areas dominate the 

district's land cover. Specifically, non-forest vegetation (VE) accounts for the largest 

proportion at 39.31% (59,522 ha), followed by forest (FO) at 28.79% (43,610.61 ha). Bare 

land (BA) covers a relatively large area of 23,301.03 ha, making up 15.38%, indicating land 

exploitation activities, shifting cultivation, or mountainous areas that have yet to be 

reforested. Paddy fields (RI) occupy 14,416.03 ha (9.51%), reflecting the significant role of 

agriculture in the local economic structure. Built-up (BU) has the smallest proportion, 

covering only 8,824.41 ha (5.82%). The development of certain residential areas may impact 

the natural ecosystem of the region. The spatial distribution map of land cover in Van Yen 

shows patches of bare land interspersed with natural forest areas and scattered built-up areas. 

The distribution of land cover types suggests that Van Yen District maintains a large 

proportion of forest and vegetation, but the considerable extent of bare land and cultivated 
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areas indicates ongoing land resource exploitation and agricultural-forestry development in 

the region. The land cover map built from the study is a valuable resource for local authorities 

in land-use planning, forest resource conservation, and sustainable development of 

residential areas. 

 

Figure 3. Land cover map of Van Yen district derived from the Random Forest model using Sentinel-

1 and Sentinel-2 data. 

4. Conclusion 

This study successfully developed land cover classification models using Sentinel-1 

radar and Sentinel-2 optical remote sensing data, employing the Random Forest (RF) and 

Extreme Gradient Boosting (XGBoost) models in Van Yen District, Yen Bai Province. Four 

model and data combinations were tested to evaluate their effectiveness. The results suggest 

that the most effective approach is the RF model, which integrates Sentinel-1 and Sentinel-2 

datasets. 

Both RF and XGBoost demonstrated high accuracy in classifying land cover from 

Sentinel remote sensing data, with overall accuracy (OA) ranging from 94.8% to 96.3% and 

Kappa coefficients between 0.936 and 0.955. However, RF exhibited greater stability and 

higher accuracy than XGBoost, particularly when integrating Sentinel-1 radar data with 

Sentinel-2 optical imagery. The bootstrap sampling and majority voting mechanism of RF 

enhances its noise resistance, which is especially useful when integrating radar data into the 

model. While XGBoost is renowned for its high performance and ability to detect complex 

patterns, it may be more vulnerable to noisy data. Specifically, the overall performance of 

the XGBoost model declined when radar data was added. The study highlights the potential 

of machine learning models and emphasizes the advantages of combining different remote 

sensing datasets to improve land cover classification accuracy.  
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