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Abstract: Ha Quang District, situated within the Non Nuoc Cao Bang Geopark, is an area 

of significant geological, ecological, and cultural value and has been recognized by 

UNESCO as a member of the Global Geoparks Network. However, the region is also prone 

to various geological hazards, with landslides representing a primary concern. This study 

aims to apply the Dempster-Shafer (DS) theory and Certainty Factor (CF) to analyze 

landslide susceptibility in the study area using a Geographic Information System (GIS). A 

total of 196 landslides were documented using historical records, Google Earth imagery, 

and field surveys to create a comprehensive inventory map. Seven conditioning factors, 

including slope, Topographic Roughness Index (TRI), Topographic Wetness Index (TWI), 

Stream Power Index (SPI), Mass Balance Index (MBI), Normalized Difference Vegetation 

Index (NDVI), and rainfall, were integrated as thematic layers for analysis. The belief map, 

representing the most reliable integrated landslide susceptibility model, was assessed using 

receiver operating characteristic (ROC) analysis and area under the curve (AUC). The 

evaluation revealed that the model achieved an overall accuracy of 74.5%. To compare 

performance, the Certainty Factor (CF) model was also applied, obtaining a success rate of 

67%. The results indicated that the Dempster-Shafer (DS) theory demonstrated superior 

predictive capability over the CF model. It addresses a critical gap in landslide susceptibility 

research by improving predictive accuracy compared to traditional GIS, particularly in 

handling uncertainty through the Dempster-Shafer theory. These findings are crucial for 

developing effective landslide risk mitigation strategies and optimizing land-use planning 

to enhance infrastructure protection and sustainable development. 

Keywords: Dempster-Shafer; Certainy factors; Topographic indices; Landslide 

susceptibility; Ha Quang. 

____________________________________________________________________ 

1. Introduction 

Landslides represent a significant natural hazard, frequently leading to substantial property 

damage and economic losses. These impacts primarily stem from the high costs associated with 

rebuilding essential infrastructure, including roads, residential structures, and public facilities 

[1]. Landslides result from a combination of natural processes and anthropogenic activities. 

Therefore, assessing landslide susceptibility is essential for effectively forecasting these events. 

Areas predicted to have a high risk of landslides are more likely to experience future 

occurrences. The key controlling factors include rainfall conditions, slope, and the 

characteristics of the underlying bedrock and soil [2]. In recent years, natural disasters and 
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environmental hazards driven by climate change have grown increasingly complex. Seasonal 

rainfall patterns have become unpredictable, significantly elevating the risk of landslides, flash 

floods, and debris flows [3]. As a result, disaster prevention and mitigation efforts remain 

inadequate, causing significant losses for both residents and the government. Over the past 

decades, landslide susceptibility mapping has been studied using various methods, such as 

Geographic Information Systems (GIS), probabilistic models, logistic regression models, and 

other analytical approaches. Some data networks utilize semantic segmentation techniques, 

including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

the integration of high-level object-specific information through data partitioning processes [4–

10]. The study [4] utilized three data mining techniques to develop a landslide susceptibility 

map for Hanyuan County, China. These methods included an adaptive neuro-fuzzy inference 

system integrated with the frequency ratio (ANFIS-FR), a generalized additive model (GAM), 

and a support vector machine (SVM). The analysis was conducted using twelve conditioning 

factors: slope aspect, altitude, slope angle, topographic wetness index (TWI), plan curvature, 

profile curvature, proximity to rivers, proximity to faults, proximity to roads, land use, 

normalized difference vegetation index (NDVI), and lithology. The results revealed that all 

three models exhibited strong predictive performance, with the SVM model achieving the 

highest accuracy, followed by ANFIS-FR and GAM. 

The study [5] utilized the Random Forest (RF) model to evaluate multi-hazard risks, 

encompassing floods, wildfires, and earthquakes, while also integrating an assessment of social 

vulnerability within the study area. The study [6] implemented an artificial neural network 

(ANN) enhanced through particle swarm optimization (PSO) to develop a landslide 

susceptibility map (LSM). The input dataset comprised a range of geomorphological and 

environmental variables, including elevation, slope aspect, slope gradient, curvature, soil type, 

lithology, proximity to roads, rivers, and faults, land use, stream power index (SPI), and 

topographic wetness index (TWI). The findings indicated that both models demonstrated strong 

predictive capabilities; however, according to the applied ranking system, the PSO-ANN 

model achieved superior accuracy compared to the standalone ANN model. A comprehensive 

study was undertaken to bridge critical gaps in the understanding and prediction of landslide 

susceptibility in the Naqadeh Region [7]. This research identified several key factors 

contributing to landslide occurrence, including elevation, aspect, slope gradient, lithology, 

drainage density, proximity to rivers, weathering, land cover, precipitation, vegetation, 

proximity to faults, roads, and urban areas. The results demonstrated that the multilayer 

perceptron (MLP) model achieved the highest overall accuracy in producing landslide 

susceptibility maps. The study [8] investigated the impact of both dynamic and static factors 

on landslide prediction by employing the XGBoost machine learning (ML) algorithm to 

develop landslide susceptibility maps. The findings revealed an expansion in the areas 

classified as high and very high susceptibility, with the most significant increase observed in 

scenarios incorporating both dynamic factors. 

The study [9] explored two distinct approaches for selecting landslide-free random points 

the slope threshold method and the buffer-based technique while conducting a comparative 

analysis of five machine learning models for landslide susceptibility mapping: Support Vector 

Machine (SVM), Logistic Regression (LR), Linear Discriminant Analysis (LDA), Random 

Forest (RF), and Extreme Gradient Boosting (XGBoost). The study incorporated fourteen 

geospatial data layers, including topographic variables, soil characteristics, geological data, and 

land cover features. The results highlight the effectiveness of machine learning models in 

evaluating and predicting landslide susceptibility. In a separate study, the researchers utilized 

both Random Forest (RF) and Support Vector Machine (SVM) to construct landslide 

susceptibility mapping models, employing a random search optimization technique [10]. The 

interpretability analysis revealed that the normalized difference vegetation index (NDVI) and 

proximity to roads were the most influential factors contributing to landslide occurrence. 
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In recent years, the semi-quantitative approach employing the Dempster-Shafer (DS) 

belief function model has been utilized to represent evidence uncertainty through belief 

functions, supporting the assessment and zonation of landslide susceptibility [11]. Research 

findings indicate that the DS model demonstrates high accuracy in predicting areas with a 

high risk of landslides [12–17]. In the study [12], the methodology comprised two main stages: 

the fusion of multi-source InSAR data using Dempster-Shafer evidence theory and the 

implementation of a two-step decision rule. Preliminary findings for the Luoshui-Baini section, 

derived from both ascending and descending orbit data, identified a total of 68 landslides. The 

study [13] presents a data integration framework for landslide susceptibility mapping, 

leveraging the Dempster-Shafer theory of evidence to synthesize multiple geospatial datasets. 

The case study findings indicate that the proposed approach effectively integrates diverse data 

sources while outperforming the traditional logistic regression model in predictive accuracy. 

The study [14] conducted a landslide susceptibility assessment in the Haraz watershed, 

Iran, by employing two distinct methodologies: The Dempster-Shafer model and the Weights-

of-Evidence model within a GIS framework. The analysis incorporated 11 landslide 

conditioning factors, including slope gradient, aspect, elevation, proximity to drainage 

networks, roads, and rivers, lithology, land use, topographic wetness index, stream power 

index, and slope length. The resulting susceptibility maps offer valuable insights for land use 

planning and serve as a basis for prioritizing strategies to mitigate and reduce future landslide 

risks in the case study. The study [15] conducted a comparative evaluation of three GIS-based 

models Dempster-Shafer (DS), logistic regression (LR), and artificial neural network (ANN) 

to assess landslide susceptibility in the Shangzhou District of Shangluo City, China. The study 

utilized 14 landslide conditioning factors, including altitude, slope gradient, slope aspect, 

topographic wetness index, sediment transport index, stream power index, plan curvature, 

profile curvature, lithology, rainfall, proximity to rivers, roads, and faults, as well as the 

normalized difference vegetation index (NDVI), to identify areas most susceptible to 

landslides. 

In a separate study, researchers applied the object-based geons aggregation model to map 

landslide susceptibility across Austria and evaluate the potential improvement achieved by 

incorporating the Dempster-Shafer theory (DST) [16]. The analysis considered nine 

conditioning factors, including elevation, slope, aspect, land cover, rainfall, proximity to 

drainage networks, faults, and roads, as well as lithology. Ishola et al. utilized the Dempster-

Shafer Theory of Evidential Belief Function (DST-EBF) model to develop a groundwater 

prospectivity zonation (GWPZ) map for the study areas. The analysis incorporated remote 

sensing, geological, field geophysical, and hydrological datasets, integrating groundwater 

conditioning factors (GWCFs) within a Geographic Information System (GIS) framework 

[17]. Machine learning models often achieve high accuracy but require large training datasets 

and lack interpretability, making them less suitable for regions with limited data availability. 

In contrast, the Dempster-Shafer (DS) theory is particularly advantageous for handling 

uncertainty and integrating multiple data sources, making it a more effective approach for 

landslide susceptibility assessment in data-scarce environments. Ha Quang District, with its 

steep terrain and fragile geological structures, has experienced frequent landslides, with 196 

events recorded via remote sensing. These risks are further amplified by human activities 

such as deforestation and infrastructure development, while increasing rainfall variability due 

to climate change acts as a major triggering factor. 

Considering these challenges, the DS approach and CF model with topographic indices 

prove to be an effective solution for generating accurate susceptibility maps in regions with 

limited data and dynamic environmental conditions. The research seeks to offer critical insights 

for disaster risk management and support the preservation of biodiversity, as well as 

archaeological, historical, and environmental assets within the geopark region. 
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2. Materials and Methods 

2.1. Study area 

Ha Quang District, situated in Cao Bang Province, is a mountainous region within the Non 

Nuoc Cao Bang Geopark, located approximately 40 kilometers north of Cao Bang City. 

Geographically, the district is bordered by Trung Khanh District to the east, Bao Lac District 

to the west, Hoa An and Nguyen Binh Districts to the south, and China to the north (Figure 1). 

The district covers a total area of 810.96 km² and has a population of 59,467 people [18]. 

The study area is distinguished by its steep mountainous terrain, intricate geological 

structures, and unstable vegetation cover. As a highland region, it is highly vulnerable to 

environmental hazards, particularly landslides and flash floods. Prolonged heavy rainfall, 

coupled with human activities such as mining, road construction, and agricultural practices, 

further exacerbates the risk of landslides. These factors have led to substantial damage to 

property and infrastructure, disruptions to local livelihoods, and the degradation of the natural 

landscape. 

 

Figure 1. Administrative map of Ha Quang district, Cao Bang province. 

2.2. Data collection  

The study was carried out in five key steps, as follows: 

(1) Landslide Identification: Landslide locations were determined through optical remote 

sensing analysis of Google Earth imagery, supplemented by extensive field surveys. 

(2) Selection and Extraction of Factors: Seven influencing factors were selected and 

extracted using multiple data sources, including Digital Elevation Models (DEM), Landsat 8 

(OLI+), and satellite-based rainfall measurements. 

(3) Application of the Dempster-Shafer Theory (DST) and CF model: The DST and CF 

model were employed to compute importance weights for each causative factor map. 

(4) Generation of the DS and CF Map: The weighted factor maps were integrated with 

their corresponding importance weights to produce the DS susceptibility map and CF map.  

By utilizing the distinct advantages of each model, this study seeks to conduct a 

comprehensive comparison of their predictive performance, enhancing the accuracy of 

landslide susceptibility mapping. A total of 196 landslide occurrences in the study area were 

identified through visual analysis of Google Earth imagery, utilizing historical statistical data 
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to develop a comprehensive landslide inventory map. These events are primarily concentrated 

in Da Thong, Truong Ha and Xuan Hoa, as depicted in Figure 2.  

Many landslides are located along major river systems, including the Bang River and Bang 

River tributaries and on slopes adjacent to the DT204 provincial road. The observed landslides 

primarily consist of soil slips and minor, shallow-scale slope slides. Based on a comprehensive 

review of national and international research on landslide susceptibility, seven key conditioning 

factors were selected due to their established influence on landslide susceptibility. 

The data used in this study was partially obtained from existing information and maps 

prepared by various organizations, while the remaining data was generated through field 

investigations. The rainfall data corresponds to the maximum daily precipitation recorded in 

August 2023, was provided by the US National Oceanic and Atmospheric Administration 

(NOAA). It was estimated using interpolation techniques based on data from meteorological 

stations. The DEM (30m tiff) and Landsat 8 (OLI+) imagery, captured on December 22, 2023, 

was sourced from the USGS [19], with a spatial resolution of 30 meters for multispectral 

images and 15 meters for the panchromatic band. 

The selection of the seven conditioning factors: Slope, Topographic Ruggedness Index 

(TRI), Topographic Wetness Index (TWI), Stream Power Index (SPI), Mass Balance Index 

(MBI), Normalized Difference Vegetation Index (NDVI), and Rainfall was based on their well-

documented influence on landslide occurrence in previous studies [20, 21] and their suitability 

for the study area's environmental and geological conditions. These factors represent a 

comprehensive combination of topographic, hydrological, and vegetation-related parameters 

that directly impact slope stability. 

Slope plays a fundamental role in gravitational instability, while TRI, TWI, SPI, and MBI 

account for terrain roughness, water retention, erosive potential, and mass balance dynamics, 

respectively. NDVI reflects vegetation cover, which contributes to slope reinforcement, 

whereas Rainfall serves as a primary triggering factor for landslides. These seven factors were 

prioritized over other potential variables, such as soil depth or fault density, due to their strong 

correlation with landslide susceptibility, their proven reliability in similar geographic settings 

[22]. The Dempster-Shafer and CF theory model is integrated with terrain indices to assess 

landslide susceptibility. The landslide-triggering factors used in the sensitivity analysis are 

classified into three primary categories in Table 1. 

Table 1. The processed data and their sources. 

Data Factor Source Processing Method 

Topological  

Slope (Raster) Derived from DEM 
Calculated using GIS tools to 

determine slope angle 

SPI (Stream Power 

Index) [23] 
Derived from DEM 

Computed from DEM using 

GIS-based hydrological analysis 

TRI (Terrain 

Ruggedness Index) 

(Raster) [24] 

Derived from DEM 
Derived using GIS tools to 

assess terrain roughness 

TWI (Topographic 

Wetness Index) 

(Raster) [25] 

Derived from DEM 
Calculated using DEM and flow 

accumulation data 

MBI (Mass Balance 

Index) (Raster) [26] 
Derived from DEM 

Estimated using DEM in 

combination with soil 

production and erosion data 

Hydro-

Meteorological 
Rainfall (Raster) 

CMORPH precipitation 

dataset of US National 

Oceanic and Atmospheric 

Administration (NOAA) 

Interpolated from 

meteorological station data 

Anthropogenic 

Hazard-Enhancing 

NDVI (Normalized 

Difference Vegetation 

Index) (Raster) 

Satellite imagery (Landsat 

8) 

Computed using NIR and Red 

bands of satellite images 
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Figure 2. The landslide points in the study area. 

2.3. Methodology 

2.3.1. Dempster-Shafer Theory (DS) 

The Dempster-Shafer Theory (DS) is a powerful tool for handling uncertainty and 

integrating multiple data sources [27, 28]. Originally formulated by Arthur P. Dempster in 

1967, the method was subsequently expanded and refined by Glenn Shafer in 1976. 

This method is based on the theory of belief functions, where different data layers are 

represented as Evidence-Based Functions (EBF). These functions consist of four fundamental 

components [20]. 

- Belief (Bel): The lower bound of confidence that an area is prone to landslides. 

- Plausibility (Pls): The upper bound, representing the maximum possible support for 

landslide occurrence. 

- Uncertainty (Unc): The gap between Bel and Pls, calculated as Unc = Pls - Bel. 

- Disbelief (Dis): The degree of opposition to landslide occurrence, given by Dis = 1 - Pls. 

These components satisfy Bel + Unc + Dis = 1, ensuring a complete representation of 

uncertainty. To compute EBF values, seven spatial evidence maps are overlaid with a binary 

landslide inventory map. For each evidence class, the number of pixels intersecting landslides 

(N(Cij∩L) and non-landslide areas (N(Cij) - N(Cij∩L) is determined. 

Integration of multiple evidence layers follows Dempster’s rule of combination, refining 

landslide susceptibility predictions by merging individual EBF maps. This allows for a 

probabilistic yet flexible approach to hazard assessment. 

1 2 1 2 2 1

1 2

X X X X X X

X X

Bel Bel Bel Unc Bel Unc
Bel

+ +
=


    (1) 

1 2 1 2 2 1

1 2

X X X X X X

X X

Dis Dis Dis Unc Dis Unc
Dis

+ +
=


                (2) 
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X X
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Unc Unc
Unc =


                  (3) 

1 2 1 2X X 1 X XPls 1 Bel −= −       (4) 

     
1 2 1 2X X X X1 Bel Dis Dis Bel= − −          (5) 

The landslide susceptibility map is developed based on Equation (6): 

 ( )
n

Bel 1
LSI Bel X

=
=           (6) 

where LSI (Landslide Susceptibility Index) represents the index measuring the likelihood 

of landslides occurring; Bel (Belief Function) is a belief function based on Dempster-Shafer 

theory, indicating the confidence level of a specific conditioning factor in triggering landslides; 

X is the value of a variable or conditioning factor (e.g., slope, aspect, etc.); n is the total number 

of conditioning factors considered in the model. 

2.3.2. Certainty Factor model  

The Certainty Factor (CF) method is a statistical approach for assessing landslide 

susceptibility [29]. CF quantifies the relationship between landslide occurrence and influencing 

factors, with values ranging from -1 to 1: CF > 0: Strong positive correlation; CF < 0: Weak or 

negative correlation; CF = 0: No clear relationship. It is calculated as:  
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ij

ij
ij

ij
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f f
, if f f

f 1 f
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f f
, if f f

f 1 f

−


−
= 

−
 
 −

     (7) 

where fij and f represent landslide densities in specific classes and the overall study area, 

respectively. 

2.3.3. Evaluation and comparison method 

a) Statistical Validation of Factor Contributions 

Multicollinearity, or the correlation among independent variables, is assessed in regression 

analysis using two key indicators: Variance Inflation Factor (VIF) and Tolerance Factor (TOF). 

The values of VIF and TOL are determined using Equations (8) and (9). 

  
2

i

1
VIF

1 R
=

−
      (8) 

   
1

TOF
VIF

=        (9) 

where 2

iR represents the coefficient of determination for the independent variable 𝑖 when 

regressed against the other predictors in the model. 

VIF measures how much the variance of a regression coefficient is inflated due to 

multicollinearity. A VIF < 2 indicates low multicollinearity, 2-5 suggests moderate correlation, 

and > 5 requires corrective action [30]. 

TOF, the inverse of VIF, evaluates variable independence. A TOF > 0.5 indicates low 

multicollinearity, 0.2-0.5 suggests moderate correlation, and < 0.2 signals a potential issue [30]. 

Since VIF and TOF are reciprocals, a lower VIF corresponds to a higher TOF, ensuring 

better model stability. Monitoring these values helps optimize regression models by 

eliminating or transforming highly correlated variables, thereby improving reliability and 

predictive accuracy. 
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b) Evaluation and comparison method 

There are several methods for evaluating the accuracy of landslide susceptibility maps, 

with field validation being the most reliable. However, this approach is often difficult and 

resource-intensive. To address this, various statistical and mathematical techniques are 

commonly used, including landslide density analysis, Success Rate Curve (SRC), Prediction 

Rate Curve (PRC), Chi-square validation, and Receiver Operating Characteristic (ROC) 

analysis. 

In this study, the ROC curve was applied to assess the predictive performance of the 

models. The ROC curve is generated by plotting sensitivity against 100-specificity, which in 

this paper corresponds to the cumulative percentage of landslide occurrences versus the 

percentage of the landslide susceptibility index [31]. The Area Under the Curve (AUC) 

measures the model’s accuracy, with values ranging from 0 to 1: 

AUC < 0.5: The model performs worse than random prediction. 

0.5 ≤ AUC < 0.7: The model has low predictive capability. 

0.7 ≤ AUC < 0.9: The model has moderate to good predictive performance. 

AUC ≥ 0.9: The model is highly accurate. 

AUC ≈ 1.0: The model provides nearly perfect predictions. 

3. Results and Discussions  

a) Analysis of landslide susceptibility based on EBF and FR values 

The landslide susceptibility map is estimated based on the scale, completeness, and 

accuracy of the landslide inventory map, as well as the maps of various landslide conditioning 

factors. The susceptibility maps were developed using the Dempster-Shafer (DS) models, 

incorporating key conditioning factors such as slope, Stream Power Index (SPI), Topographic 

Wetness Index (TWI), Mass Balance Index (MBI), and Terrain Ruggedness Index (TRI). The 

maps categorize susceptibility into five classes: very low, low, moderate, high, and very high. 

The results for the factors are listed in Table 2. 

Table 2. Spatial relationships between the seven factors and landslide distribution. 

F
a

c-

to
rs

 

Class N(Cij) Ratio (%) N(CijD) Ratio (%) Freq.ration (FR) BelCij DisCij UncCij PlsCij 

S
lo

p
e 

(0
) 

<10 770707 20.119 592 11.348 0.564 0.117 0.200 0.683 0.800 

10-20 1166297 30.446 1720 32.969 1.083 0.197 0.201 0.602 0.799 

20-30 914351 23.869 1535 29.423 1.233 0.245 0.200 0.554 0.800 

30-45 712500 18.599 1053 20.184 1.085 0.230 0.200 0.570 0.800 

>45 266897 6.967 317 6.076 0.872 0.210 0.199 0.591 0.801 

M
B

I 

<-0.5          

-0.5-0 1375135 35.897 2090 40.061 1.116 0.188 0.202 0.610 0.798 

0-0.5 667723 17.431 749 14.357 0.824 0.177 0.200 0.624 0.800 

>0.5 377022 9.842 388 7.437 0.756 0.177 0.199 0.624 0.801 

S
P

I 

0-500 1410872 36.830 1990 38.145 1.036 0.172 0.202 0.626 0.798 

500-1000          

1000-2000 1828326 47.728 2180 41.786 0.876 0.120 0.204 0.675 0.796 

2000-5000 573754 14.978 836 16.025 1.070 0.237 0.199 0.564 0.801 

>5000 536571 14.007 821 15.737 1.124 0.251 0.199 0.549 0.801 

T
R

I 

0-2 473570 12.362 755 14.472 1.171 0.267 0.199 0.534 0.801 

2-4 418531 10.926 625 11.980 1.097 0.254 0.199 0.547 0.801 

4-6          

6-12 472231 12.327 283 5.425 0.440 0.100 0.199 0.701 0.801 

>12 634860 16.573 721 13.820 0.834 0.181 0.200 0.620 0.800 

T
W

I <3 794959 20.752 1248 23.922 1.153 0.238 0.200 0.562 0.800 

3-6 1409737 36.801 2321 44.489 1.209 0.201 0.202 0.597 0.798 

6-9 518965 13.547 644 12.344 0.911 0.205 0.199 0.596 0.801 
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F
a

c-

to
rs

 
Class N(Cij) Ratio (%) N(CijD) Ratio (%) Freq.ration (FR) BelCij DisCij UncCij PlsCij 

9-12          

>12 91008 2.376 130 2.492 1.049 0.265 0.198 0.537 0.802 

R
ai

n
fa

ll
 

<600 2006834 52.387 2854 54.706 1.044 0.131 0.206 0.663 0.794 

600-900 923349 24.104 1366 26.184 1.086 0.215 0.200 0.584 0.800 

900-1200 421327 10.999 489 9.373 0.852 0.197 0.199 0.604 0.801 

1200-1500 388234 10.135 378 7.246 0.715 0.166 0.199 0.634 0.801 

>1500          

N
D

V
I 

<0.1 55309 1.444 33 0.633 0.438 0.112 0.199 0.690 0.801 

0.1-0.2 629432 16.431 1485 28.465 1.732 0.379 0.199 0.422 0.801 

0.2-0.3 1213660 31.682 2118 40.598 1.281 0.230 0.201 0.569 0.799 

0.3-0.4 1023042 26.706 829 15.890 0.595 0.113 0.201 0.686 0.799 

>0.4 909309 23.737 752 14.414 0.607 0.120 0.200 0.679 0.800 

Table 2 presents the calculated Evidential Belief Function (EBF) and Frequency Ratio 

(FR) values for different environmental factors influencing landslide susceptibility. The results 

highlight significant relationships between topographic, hydrological, and vegetation-related 

parameters and landslide occurrence patterns. 

b) Slope influence on landslide susceptibility 

Landslide occurrences are predominantly concentrated in areas with slopes ranging from 

10-45 degrees, with the 20-30° category showing the highest belief function (Bel = 0.245) and 

a relatively strong FR value (1.233). Moderate slopes tend to accumulate soil and weathered 

material, forming a transitional zone between bedrock and the surface This zone is particularly 

prone to failure, especially during heavy rainfall when increased pore water pressure reduces 

soil strength. In contrast, slopes steeper than 45° demonstrate lower susceptibility (Bel = 0.210, 

FR = 0.872). Extremely steep slopes are typically characterized by exposed rock formations 

rather than thick soil deposits. Since landslides predominantly occur in areas with substantial 

soil cover, regions with minimal or absent soil layers are less prone to landslides [32]. 

c) Mass Balance Index (MBI) and landslide susceptibility 

The MBI values suggest that areas with negative mass balance (MBI < 0) are more prone 

to landslides, with the -0.5 to 0 category displaying the highest FR (1.116) and belief function 

(Bel = 0.188). This indicates that regions experiencing net material loss due to erosion and 

weathering are more susceptible to failure [25]. Conversely, areas with a positive mass balance 

(MBI > 0.5) show the lowest susceptibility (Bel = 0.177, FR = 0.756), implying greater slope 

stability due to material accumulation. 

d) Stream Power Index (SPI) and Terrain Ruggedness Index (TRI) 

SPI values indicate that high-energy flow regions (SPI > 5000) exhibit the highest 

susceptibility (Bel = 0.251, FR = 1.124), suggesting that intense surface runoff contributes 

significantly to slope instability. Similarly, terrain ruggedness (TRI) follows a comparable 

trend, with moderate ruggedness (TRI = 2-4) exhibiting the highest landslide likelihood (Bel = 

0.254, FR = 1.097). This finding aligns with previous studies, where increased surface 

roughness correlates with higher landslide frequency due to structural weaknesses in highly 

dissected terrains [24]. 

e) Topographic Wetness Index (TWI) and Rainfall Contributions 

TWI values indicate that moderate to high wetness areas (TWI = 3-6) have the highest 

landslide susceptibility (Bel = 0.201, FR = 1.209), reinforcing the role of soil moisture 

accumulation in triggering failures. Additionally, rainfall influence is most pronounced in 

regions with precipitation below 600 mm (Bel = 0.131, FR = 1.044), indicating that landslides 

are not solely driven by extreme rainfall events but also by cumulative effects of prolonged wet 

conditions. 
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f) Normalized difference vegetation index (NDVI) and Landslide Susceptibility 

NDVI values reveal an inverse relationship between vegetation density and landslide 

occurrence. The 0.1-0.2 NDVI range demonstrates the highest susceptibility (Bel = 0.379, FR 

= 1.732), suggesting that sparse vegetation cover fails to provide sufficient root reinforcement 

for slope stability. Conversely, areas with higher NDVI (> 0.4) exhibit lower susceptibility (Bel 

= 0.120, FR = 0.607), highlighting the protective role of dense vegetation in stabilizing slopes 

by reducing surface erosion and improving soil cohesion. 

To evaluate and address potential multicollinearity among landslide predisposing factors, 

variance inflation factors (VIF) were computed following data preprocessing, as presented in 

Table 3. The results indicate that all factors exhibit VIF values below 2, suggesting that 

multicollinearity is not a significant issue and that the model variables maintain statistical 

independence. 

Table 3. The influence and independence of contributing factors. 

No Factor Importance VIF TOF 

1 Slope 0.427 1.746 0.5729 

2 TRI 0.450 1.818 0.5501 

3 TWI 0.068 1.073 0.9320 

4 MBI 0.009 1.009 0.9908 

5 SPI 0.037 1.039 0.9627 

6 NDVI 0.163 1.195 0.8367 

7 Rainfall 0.068 1.072 0.9325 

Among the evaluated factors, TRI (0.450) emerged as the most critical driver of landslide 

susceptibility in the study area, emphasizing the significant role of terrain ruggedness in slope 

instability. Its VIF (1.818) and TOF (0.5501) indicate moderate multicollinearity, suggesting a 

correlation with Slope (0.427, VIF: 1.746, TOF: 0.5729). These finding highlights that highly 

rugged terrains, rather than steep slopes alone, are a primary trigger for landslides in this region 

an important distinction from studies in other geographical contexts where slope inclination is 

often the dominant factor. 

Another noteworthy result is the influence of NDVI (0.163, VIF: 1.195, TOF: 0.8367), 

which underscores the stabilizing effect of vegetation cover. Unlike in many mountainous 

regions where hydrological factors outweigh vegetation influence, this study reveals that areas 

with reduced vegetation density are significantly more prone to landslides, indicating that 

deforestation or land-use changes could exacerbate slope failures. 

While Rainfall (0.068, VIF: 1.072, TOF: 0.9325) and TWI (0.068, VIF: 1.073, TOF: 

0.9320) are traditionally key contributors to landslide susceptibility, their relatively lower 

importance in this study suggests that rainfall-induced slope failures are less dominant 

compared to terrain-driven instabilities. This deviation from global patterns highlights the 

necessity of localized models for effective landslide prediction. 

Conversely, MBI (0.009, VIF: 1.009, TOF: 0.9908) and SPI (0.037, VIF: 1.039, TOF: 

0.9627) were the least influential factors, indicating that mass balance dynamics and stream 

power play a minimal role in triggering landslides in this specific landscape. This suggests that 

landslides in the region are not significantly influenced by erosion or sediment transport but 

are more structurally driven by terrain configuration. 

These findings challenge conventional assumptions about landslide susceptibility by 

revealing that terrain ruggedness surpasses slope steepness as the dominant factor, while 

vegetation loss emerges as a key destabilizing element. The results underscore the importance 

of integrating localized environmental characteristics into predictive modeling, ensuring that 

landslide susceptibility assessments align with the unique geomorphological and ecological 

conditions of the study area. 
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g) Measurement of performance and comparison of susceptibility models 

The performance evaluation of landslide susceptibility models reveals significant 

differences in predictive capability between the CF and EBF models, as measured by the area 

under the receiver operating characteristic curve (AUC) (Figure 3).  

The CF model achieves an AUC of 0.670, which falls within the 0.6-0.7 range, classifying 

it as “poor” according to standard accuracy benchmarks. In contrast, the EBF model attains a 

higher AUC of 0.745, positioning it within the 0.7-0.8 range, indicating “fair to good” 

predictive performance. These results suggest that the EBF model demonstrates superior 

classification capability compared to the CF model in identifying landslide-prone areas. 

Beyond AUC values, an analysis of the ROC curves reveals additional insights. Both 

models exhibit relatively wide confidence intervals, particularly in the lower region of the ROC 

curve, indicating some degree of uncertainty in classification at specific thresholds. However, 

the EBF model shows greater stability at higher true positive rates (TPR), suggesting that it 

consistently performs better in detecting actual landslide occurrences. This highlights the 

robustness of the EBF model and it was employed to develop a detailed landslide hazard zoning 

map for the study area. 

 

Figure 3. ROC curves for validation testing: (a) AUC of the landslide susceptibility map generated 

using the EBF model; (b) AUC of the landslide susceptibility map derived from the FR model. 

Based on Table 4, Figure 4, landslide-prone areas are classified into different risk levels 

as follows: Very high landslide risk areas cover an area of 91.1 km², accounting for 11,23% of 

the total study area. This region has a high density of landslides, with 65 recorded landslides; 

High landslide risk areas span 210.3 km², making up 25,93% of the total study area. This 

category has the largest proportion of land and the highest number of recorded landslides, 

totaling 63 events; Moderate landslide risk areas occupy 284.6 km², representing 35,73% of 

the study area. In this region, 63 landslides have been recorded; Low landslide risk areas cover 

140.8 km², comprising 17,36% of the study area. The number of recorded landslides in this 

category is 4. 

The areas with the highest landslide risk are primarily concentrated in the communes of 

Noi Thon va Phu Ngoc. Additionally, some communes in the communes of Truong Ha, Vi 

Quang, are also highly susceptible to landslides (Figure 5). These areas require special attention 

in disaster risk management and infrastructure development planning. 

(a) (b) 
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Table 4. The results of the reliability analysis of the methods. 

Risk level 
Area 

(km2) 
Pixel 

Ratio of pixels to the 

total of pixels (%) 

Actual landslide 

points 

Ratio of landslides to the total 

number of landslides (%) 

Very low 84.2 210,087 10.38 1 2.09 

Low 140.8 351,258 17.36 4 4.91 

Moderate 284.6 709,869 35.09 63 35.73 

High 210.3 524,657 25.93 63 31.12 

Very High 91.2 227,145 11.23 65 26.15 

Total 810.96 2,023,016 100 196 100 

(a) (b)

(c) (d)

(e) (f)

(g) Figure 4. Factors include (a) Slope; (b) SPI; (c) 

TWI; (d) TRI; (e) MBI; (f) Average rainfall during 

rainy season; and (g) NDVI. 
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Figure 4. The landslide susceptibility map was developed using the DS model. 

 

Figure 5. The landslide susceptibility map using the EBF model and several landslide blocks 

identified in Google Earth imagery. 

4. Conclusion 

In conclusion, this study identifies seven key factors contributing to landslides in the study 

area: slope, SPI (Stream Power Index), TWI (Topographic Wetness Index), TRI (Terrain 

Ruggedness Index), MBI (Mass Balance Index), rainfall, and NDVI (Normalized Difference 

Vegetation Index). The ROC method was applied to evaluate and validate the performance of 

the obtained results, indicating success rates of 74.5% for EBF and 67% for FR. The results 
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demonstrate the feasibility, strong predictive capability, and effectiveness of the Dempster-

Shafer modeling landslide susceptibility mapping in Ha Quang with high landslide occurrence 

rates observed in the eastern and parts of the southwestern regions.  

The results underscore the complex interplay between topography, hydrology, and 

vegetation cover in landslide susceptibility. Moderate slopes (20-30°), negative mass balance, 

high surface runoff (SPI > 5000), and sparse vegetation (NDVI 0.1-0.2) emerge as the most 

critical factors influencing landslide occurrence. These findings emphasize the need for 

integrated hazard assessment models that incorporate multiple environmental parameters to 

enhance landslide prediction accuracy and support risk mitigation strategies. The relationship 

between slope gradient and landslide susceptibility in study area is not strictly linear; instead, 

it follows a parabolic pattern. Therefore, landslide susceptibility models must distinguish 

between soil-driven landslides (common in moderate slopes) and rockfalls or structural failures 

(more typical on very steep terrain). And the TRI index emerges as a crucial factor in 

enhancing the accuracy of landslide risk prediction, offering valuable insights into terrain 

instability. 

This study acknowledges certain limitations, primarily related to data constraints and the 

need for a broader model comparison. While the analysis provides valuable insights into 

landslide susceptibility, its predictive capability remains limited due to the exclusion of key 

socio-environmental factors such as land use patterns, population density, and human 

activities. Additionally, the model's performance could be further validated by applying it to 

different case studies with diverse geological and climatic conditions. 

To enhance the reliability and applicability of the proposed approach, future research 

should focus on expanding the dataset and integrating a wider range of influencing factors. 

Incorporating machine learning techniques and high-resolution remote sensing data may 

improve predictive accuracy. Furthermore, testing the model in various geographical regions 

with complex topographies would help develop a more robust and transferable framework 

for landslide risk assessment. 
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