
 

VNJ.Hydrometeorol.2020, 8, 79–93; doi: 10.36335/VNJHM.2020(5).80–94 http://vnjhm.vn/ 

Research Article 

Application of GSMaP Satellite data in precipitation estimation 
and nowcasting: evaluations for October 2019 to January 2020 
period for Vietnam 

Mai Khanh Hung1*, Kazuo Saito2,3,4, Mai Van Khiem1, Du Duc Tien1, Nguyen Viet 
Hung5 

1 National Center for Hydro–Meteorological Forecasting; 
maikhanhhung18988@gmail.com; maikhiem77@gmail.com; duductien@gmail.com  

2 Japan Meteorological Business Support Center, Japan; k–saito@jmbsc.or.jp 
3 Atmosphere and Ocean Research Institute, University of Tokyo, Japan; 

k_saito@aori.u.tokyo.ac.jp 
4 Meteorological Research Institute, Japan Meteorological Agency, Japan; ksaito@mri–

jam.go.jp 
5 Aero Meteorological Observatory; truongphi115@gmail.com  
* Correspondence: maikhanhhung18988@gmail.com; Tel.: +84916400000 

Received: 05 June 2020; Accepted: 20 August 2020; Published: 25 August 2020 

Abstract: The GSMaP Rainfall (Global Satellite Mapping of Precipitation) data 
(GSMaP_NOW and GSMaP_MVK) have been used for precipitation analysis at 
Vietnamese National Center for Hydro–Meteorological Forecasting (NCHMF) since 
October 2019. This study verified the quality of rainfall estimates of GSMaP_NOW, 
GSMaP _MVK and Himawari–8 based on 6 hourly rain gauge data from 184 SYNOP 
stations for a 4–month period from October 2019 to January 2020. The results show that 
GSMaP_MVK has the best rainfall estimate among the three data types in terms of RMSE, 
correlation and other categorical statistics except the probabilty of detection (POD). 
GSMaP_NOW was better than Himawari–8 for RMSE, correlation, and flase alarm rate, 
whilethe threat scores of GSMaP_NOW and Himawari–8 were in the same level. 
Himawari–8 tended to overestimate intense rains, and its bias scores were very large. This 
overestimation is significant when the cloud top temperature of prerecipitation system is 
very low. GSMaP_NOW can be used in parallel with Himawari–8 rainfall estimates to 
provide realtime information to the forecasters in forecasting and warning on the heavy 
rainfall, flash flood and landslide. 

Keywords: Satellite precipitation estimates; GSMaP_NOW; GSMaP_MVK; Himawari–8; 
Precipitation nowcasting; Verification of rainall.  

 

1. Introduction 

Vietnam is one of the countries that suffers from many natural disasters every year [1]. 
In particular, disasters by heavy rains often cause the greatest damage in Vietnam. Therefore, 
monitoring, forecasting and warning of heavy rainfall, flash floods, landslides, and land 
subsidence due to floods are necessary and also the most important tasks of the Vietnamese 
National Center for Hydro–Meteorological Forecasting (NCHMF). In the past, forecasters 
carried out these works mainly based on rain gauge data and radar precipitation estimates. 
However, the density of observatories and radar stations is sparse. This makes it difficult for 
forecasters in heavy rainfall monitoring, forecasting and floods and landslides warning, 
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especially in areas where rainfall observations are limited. Rainfall estimates from satellites 
have been used to compensate this problem. In the world, there are many studies showing the 
effectiveness of satellite precipitation estimates in forecasting heavy rainfall landslides and 
flash floods [2–3]. 

Currently, NCHMF is receiving satellite Himawari–8 precipitation estimates from Aero 
Meteorological Observatory (AMO) operationally. These data provide precipitation 
information for areas where rain gauge observation stations and radar–estimated rainfall are 
insufficient. Himawari–8 rainfall estimates are used by forecasters to monitor cloud systems 
and update rainfall level to give timely forecastings and to warn heavy rain, flash flood and 
landslide. However, there are limitations in Himawari–8 data to accurately estimate 
precipitation, because it observes cloud systems by the brightness temperature [4–5]. These 
are difficulties for forecasters in monitoring, forecasting and warning heavy rain. An 
additional satellite rainfall estimate is needed to continuously provide rainfall information to 
forecasters. The GSMaP (Global Satellite Mapping of Precipitation) rainfall data is a useful 
solution. There are many studies proving the role of GSMaP in operational forecasts and 
research. GSMaP precipitation data is high–resolution estimates of rainfall based on satellite 
microwave radiometers provided by the Japan Science and Technology Agency (JST) and 
the Japan Space Exploration Agency (JAXA). GSMaP data have been evaluated and applied 
in many parts of the world [6–7]. In Vietnam, Ngo Duc Thanh et al. examined performance 
of GSMaP in central Vietnam for long–term rain [8].  

Recently, Saito et al. [5] tested GSMaP data to improve the precipitation analysis at 
NCHMF. They compared the accuracy of precipitation estimates by GSMaP_NOW, 
GSMaP_MVK and Himawari–8 against AWS precipitation for a heavy rainfall case in 
central Vietnam in December 2018. Since October 2019, GSMaP has been used for operation 
at NCHMF. In order to confirm that GSMaP_NOW and MVK data are suitable for the 
operation, it is necessary to validate them for a long–term period. Based on that reason, this 
study carried out the evaluation of GSMaP_NOW and MKV in the period from October 2019 
to the end of January 2020 as a foundation for applying this data in business. 

2. Materials and Methods  

2.1. Framework of Research 

The aim of this research is to verify the 6–hour rainfall estimates from Himawari–8, 
GSMaP_NOW and GSMaP_MVK against rain gauge data. The data series used for this 
verification is four months from October 2019 to January 2020. Himawari–8 satellite 
estimates of rainfall are provided hourly from AMO to NCHMF with a horizontal resolution 
of 5km (0.045 degree). In this study, the 6–hour rainfall amount was calculated as the sum 
of six consecutive hourly rainfall estimates data. GSMAP_MKV is high–resolution (0.1 
degree) global rain estimate with short time steps (1 hour) using passive microwave radiation 
measurement data by GPM satellites. This data was smoothed out based on the Kalman filter 
model, which is based on analysis of atmospheric motion vectors obtained from two 
consecutive infrared images by geostationary satellites [9–10]. JAXA develops a near real–
time version of GSMAP products (GSMaP_NRT) for the monitored area of the Himawari–8 
to create rainfall estimates in real time. After that, the next 0.5hours data is extrapolated by 
atmospheric motion vectors to create the GSMAP_NOW rain product at the present time 
with available satellite microwave data [11–12]. 
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Figure 1. Distribution of 184 SYNOP rain gauges in Vietnam.  

Table 1. Detailed GSMaP products. 

 Resolution Latency 
Update 
interval 

MVK 
Horizontal: 

0.1x0.1 
deg.lat/lon 
Temporal: 

01 hour 

3 day(s) 01 hour (s) 

NOW 0 hour(s) 0.5 hour(s) 

There are 184 SYNOP rain gauge stations available in Vietnam and the distribution of 
rainfall stations is shown in Figure1 and Table 2. Rain gauge data which represent the rainfall 
at these points were used as reference in comparison of study. The rain gauge data were 
monitored and evaluated to control the quality processes to eliminate errors. Himawari–8, 
GSMaP_NOW and GSMaP_MVK grid rainfall estimates data were interpolated to these 184 
positions of rain gauge stations. In this study, the nearest neighbor interpolation method was 
chosen. Due to the high localization rain, the nearest interpolation method reduces the 
influence of the terrain during interpolation. In this interpolation method, the distances from 
the positions of rain gauge stations to the grid nodes of the rainfall estimates data are 
calculated, and the value at the nearest grid point is assigned to the rain gauge point. Note 
that in Saito et al. (2020) [5], GSMaP and Himawari–8 3–hour rainfall estimates were verified 
against AWS data with interpolated verification grids of 5 km horizontal resolution. 

Table 2. SYNOP rain gauge stations. 

Name Lat Lon Name Lat Lon Name Lat Lon Name Lat Lon Name Lat Lon 

Muong Te 22.4 102.8 Chiem Hoa 22.2 105.3 Son Tay 21.2 105.5 Ba Don 17.8 106.4 Lak 12.2 108.2 

Sin Ho 22.4 103.2 Cho Ra 22.5 105.7 Lang 21 105.8 Con Co 17.2 107.4 Dac Mil 12.5 107.6 

am Duong 22.4 103.5 Ngan Son 22.4 105.7 Hoai Duc 21.1 105.8 Dong Ha 16.8 107.1 Dak Nong 12 107.7 

Than Uyen 22 103.9 Bac Can 22.2 105 Ha Dong 21 105.8 Khe Sanh 16.6 106.7 Da Lat 12 108.5 

Muong Lay 22.1 103.2 Thai Nguyen 21.6 105.8 Chi Linh 21.1 106.4 Hue 16.4 107.6 Lien Khuong 11.7 108.4 

Tuan Giao 21.6 103.4 Dinh Hoa 21.9 105.6 Hai Duong 21 106.3 A Luoi 16.2 107.3 Bao Loc 11.5 107.8 

Pha Din 21.6 103.5 Minh Dai 21 105.1 Hung Yen 20.7 106.1 Nam Dong 16.2 107.7 Cat Tien 11.6 107.4 

Dien Bien 21.4 103 Phu Ho 21.5 105.2 Nam Dinh 20.4 106.2 Da Nang 16.1 108.4 Phuoc Long 11.8 107 

QD  Hoang Sa 

QD Truong Sa 
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Name Lat Lon Name Lat Lon Name Lat Lon Name Lat Lon Name Lat Lon 

Phieng Lanh 21.9 103.6 Viet Tri 21.3 105.4 Van Ly 20.1 106.3 Tam Ky 15.6 108.5 Dong Phu 11.5 106.9 

Muong La 21.9 104.1 Vinh Yen 21.3 105.6 Phu Ly 20.5 105.9 Tra My 15.4 108.2 Tay Ninh 11.3 106.1 

Son La 21.3 103.9 Tam Dao 21.5 105.7 Nho Quan 20.3 105.8 Ly Son 15.4 109.2 Tri An 11.1 107 

Song Ma 21.1 103.8 Cao Bang 22.7 106.3 Ninh Binh 20.3 106 Q.Ngai 15.1 108.8 Bien Hoa 10.9 106.8 

Co Noi 21.1 104.2 Bao Lac 23 105.7 C.Phuong 20.3 105.7 BaTo 14.8 108.7 Ta Lai 11.4 107.4 

Yen Chau 21.1 103.3 Nguyen Binh 22.7 106 Thai Binh 20.4 106.4 Hoai Nhon 14.1 109 Long Khanh 10.9 107.2 

Bac Yen 21.2 104.4 T.Khanh 22.8 106.5 Hoi Xuan 20.4 105.1 An Nhon 13.9 109.1 Thu Dau Mot 11 106.6 

Phu Yen 21.3 104.6 That Khe 22.3 106.5 Yen Dinh 20 105.7 Quy Nhon 13.8 109.2 Nha Be 10.8 106.7 

Moc Chau 20.8 104.7 Lang Son 21.8 106.8 SamSon 19.8 105.9 Son Hoa 13.1 109 Vung Tau 10.4 107.1 

Mai Chau 20.7 105.1 Mau Son 21.9 107 Bai Thuong 19.9 105.9 Tuy Hoa 13.1 109.3 Con Dao 8.7 106.6 

Kim Boi 20.7 105.5 Bac Son 21.9 106.3 Thanh Hoa 19.8 105.8 Nha Trang 12.3 109.1 Huyen Tran 8 110.6 

Chi Ne 20.5 105.8 Huu Lung 21.8 106.6 Nhu Xuan 19.6 105.6 Cam Ranh 11.9 109.2 Moc Hoa 10.8 105.9 

Lac Son 20.5 105.5 Dinh Lap 21.5 107.1 Tinh Gia 19.5 105.8 SongTTay 11.4 114.3 My Tho 10.4 106.4 

Hoa Binh 20.8 105.3 Mong Cai 21.5 108 Quy Chau 19.4 105.1 Phan Rang 11.6 109 Vinh Long 10.3 106 

Lao Cai 22.5 104 Quang Ha 21.5 107.8 Tuong Duong 19.3 104.5 Phan Thiet 10.9 108.1 Ben Tre 10.2 106.4 

Bac Ha 22.5 104.3 TienYen 21.3 107.4 Quy Hop 19.5 105.3 LaGi 10.7 107.8 Ba Tri 10.1 106.6 

SaPa 22.4 103.8 CoTo 21 107.8 Tay Hieu 19.3 105.4 Phu Quy 10.5 108.9 Cao Lanh 8 106.6 

Pho Rang 22.2 104.5 CuaOng 21 107.4 Con Cuong 19.1 104.9 Phan Ri 11.2 108.5 Cang Long 10 106.2 

Mu.C.Chai 21.9 104.1 BaiChay 21 107.1 Quynh Luu 19.1 105.6 Dak To 14.7 107.8 ChauDoc 10.7 105.1 

Yen Bai 21.7 104.4 UongBi 21 106.8 Do Luong 18.8 105.3 Kon Tum 14.4 108 Tra Noc 10.1 105.7 

Van Chan 21.6 104.5 HiepHoa 21.4 106 Hon Ngu 18.8 105.8 Playcu 14 108 Can Tho 10 105.8 

Luc Yen 22.1 104.7 LucNgan 21.4 106.6 Vinh 18.7 105.7 An Khe 14 108.7 Vi Thanh 9.8 105.5 

Ha Giang 22.8 105 SonDong 21.3 106.8 Huong Son 18.9 105.7 Yaly 14.7 107.8 Soc Trang 9.6 106 

Hoang SPhi 22.8 104.7 BacGiang 21.3 106.2 Ha Tinh 18.4 105.9 Ayunpa 13.4 108.5 Rach Gia 10 105.1 

Bac Me 22.7 105.4 BacNinh 21.2 106.1 Huong Khe 18.2 105.7 EaHleo 13.4 108.3 Phu Quoc 10.2 104 

Bac Quang 22.5 104.9 PhuLien 20.8 106.6 Hoanh Son 18 106.5 Buon Ho 12.9 108.3 Tho Chu 9.3 103.5 

Dong Van 23.3 105.3 HonDau 20.7 106.8 Ky Anh 18.1 106.3 MDrak 12.7 108.8 Bac Lieu 9.3 105.7 

T.Quang 21.8 105.2 Bach.L.Vi 20.1 107.7 Tuyen Hoa 17.9 106 B.MThuot 12.7 108.1 Ca Mau 9.2 105.2 

Ham Yen 22.1 105 BaVi 21.2 105.4 Dong Hoi 17.5 106.6 EaKmat 12.7 108.1    

2.2. Verification method 

2.2.1. Continuous statistical verifications  

The main aim of this method was to measure the correspondence between the estimated 
rainfall and the observation. To quantify this correspondence value, the following three 
statistical indices were used the mean error (ME), the root mean square (RMSE) and the 
correlation coefficient (CORR) [13].     
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where Fi is the satellite estimates, Oi is rain gauge values, F is mean of the satellite 

estimates, O is mean of the rain gauge values and n is total number of rain gauge (rainfall 
estimated data).  

2.2.2. Categorical statistical verifications 

In this study, the correspondence between the estimated and observed occurrence of 
events is measured by categorical statistics. Table 3 summarizes the contingency to verify 
satellite rainfall detection capability with rain or no rain events following thresholds from 
1mm/6h to 100mm/6h. 

Table 3. Contingency table of yes or no events with rain or no rain. 

 
Observed rainfall 

Yes No 

Estimated 
Rainfall 

Yes hits false alarms 

No misses 
correct 

negative 

In Table 3, “hits” shows correctly estimated rain events, “misses” means when the rain 
is not estimated but in fact the rain occurs, “false alarm” describes when rain events is 
estimated but actual rain events do not occur, and “correct negative” correctly shows no rain 
events occur. Five categorical statistics indices used are the frequency bias (BIAS), 
probability of detection (POD), the false alarm ratio (FAR), the threat score (TS) and 
equitable threat score (ETS). BIAS, POD, FAR, TS and ETS indices are calculated as [13]:  

hits+false alarm
BIAS=

hits+misses  
(4)

hits
POD=

hits+misses  
(5)

false alarm
FAR

hits+false alarm


 
(6)

hits
TS=

hits+misses+false alarm  
(7)

hits - hits
ETS=

hits+misses+false alarm-hits
random

random  
(8)

Where hits =P (hits+false alarm)random c  (9)
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And 

hits+misses
P

hits+misses false alarm+correct negativec    
(10)

BIAS measures the ratio of the frequency of forecast events to the frequency of observed 
events. The forecast system tends to underforecast (BIAS<1) or overforecast (BIAS>1) 
events, and BIAS does not measure how well the forecast corresponds to the observations, 
but only measures relative frequencies. POD describes how often the estimate detected 
correctly the occurrence of rain events. Range of POD is from 0 to 1 and perfect score is 1. 
FAR shows the fraction of diagnosed events that turned out to be wrong. Range of FAR value 
is from 0 to 1. The perfect score is 0. TS shows how well the estimate implied “yes” events 
to correspond with the observed “yes” events. It measures the fraction of observed and/or 
estimated events that were correct. It can be thought of as the accuracy when correct negatives 
have been removed from consideration, which means that TS is only concerned with 
estimates that count. Sensitive to hits, penalizes both misses and false alarms. ETS is like TS, 
but it removes the contribution from hits by chance in the random forecast. 

3. Results 

3.1. Continuous Statistical verifications 

Figures 2–4 are scatter plots which describe the correspondence between the 6–hour 
rainfall estimates from Himawari–8(HWM), GSMaP_NOW(NOW), GSMaP_MVK(MVK) 
and the 6–hour rains at SYNOP stations. In these scatter plots, the dashed blue line is the 
linear regression line between estimated rainfall and observed rainfall. The correlation 
coefficient (CORR), RMSE and ME values are displayed in the lower right corner. The solid 
blue diagonal line is the ideal regression or “45–degree line”, if all pairs of estimated and 
observed points lie entirely on this line, then the estimates are perfect.  

The three types of 6–hour rainfall estimates data from HMW, NOW and MKV are all 
positively correlated with the 6–hours observed rainfall. MVK has the strongest correlation, 
CorrMVK= 0.45. HMW and NOW have similar correlation coefficient values with observed 
rain, while NOW was slightly better as CorrHMW = 0.35 and CorrNOW = 0.36. The ME value 
of HMW is positive and large (MEHMW = 1.34). Conversely, the 6–hour rainfall estimates 
from NOW and MVK are lower than the actual measured rainfall as MENOW=–0.39 and 
MEMVK =–0.35. This can also be seen through the linear regression lines for MVK and NOW 
are below the ideal regression line (Figures 2–3). In contrast, the linear regression line of 
HMW is above the ideal regression line.  

Average error magnitude of three data types HMW, NOW and MVK are shown through 
RMSE values. Error magnitude of HMW is the biggest, RMSEHMW is 19.77. This value is 
3.8 times greater than RMSENOW (RMSENOW = 5.16) and 4.0 times greater than RMSEMVK 

(RMSEMVK = 4.93). 

 
(a) 

 
(b) 
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Figure 2. (a) Scatter plot diagram of 6–hour rain gauge observations and Himawari–8 6–hour rainfall 
estimates; (b) Same as in a) but enlarged view for the precipitation range 1–180 mm/6h. 

(a) (b) 

Figure 3. Same as Figure 2 except for GSMaP_NOW. 

(a) (b) 

Figure 4. Same as Figure 2 except for GSMaP_MVK. 

3.2. Categorical Statistical verifications 

Details of the values of TS, POD, FAR, ETS and BIAS indices are shown in Figures.5a, 
5b,5c, 5d, and 5e with the event numbers of the contingency table (Table 4). As shown in 
Figure 5, TSHMW, TSNOW, TSMVK tend to decrease with increasing rainfall thresholds. At all 
06h accumulated rainfalls, the values of TSMVK (green) are larger than those of TSNOW(red) 
and TSHMW(orange).  

Table 4. Contingency table by each threshold. 

  
Hits 
(FO) 

False 
alarms 
(FX) 

Misses 
(XO) 

Correct 
negative 

(XX) 
BIAS POD FAR TS ETS 

1mm/06h 

HMW 2170 3152 4772 73243 0.767 0.313 0.592 0.215 0.179 

NOW 1846 1330 5785 79670 0.416 0.242 0.419 0.206 0.181 

MVK 2384 1305 4645 75729 0.525 0.339 0.354 0.286 0.259 

10mm/06h HMW 688 1649 1089 79911 1.315 0.387 0.706 0.201 0.189 
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Hits 
(FO) 

False 
alarms 
(FX) 

Misses 
(XO) 

Correct 
negative 

(XX) 
BIAS POD FAR TS ETS 

NOW 398 602 1594 86037 0.502 0.2 0.602 0.153 0.146 

MVK 541 482 1312 81728 0.552 0.292 0.471 0.232 0.224 

20mm/06h 

HMW 366 1257 505 81209 1.863 0.42 0.774 0.172 0.165 

NOW 202 332 788 87309 0.539 0.204 0.622 0.153 0.149 

MVK 226 230 706 82901 0.489 0.242 0.504 0.195 0.191 

30mm/06h 

HMW 206 1063 274 81794 2.644 0.429 0.838 0.134 0.129 

NOW 104 226 442 87859 0.604 0.191 0.685 0.135 0.132 

MVK 99 150 424 83390 0.476 0.189 0.602 0.147 0.145 

40mm/06h 

HMW 126 912 175 82124 3.449 0.419 0.879 0.104 0.101 

NOW 52 155 282 88142 0.62 0.156 0.749 0.106 0.105 

MVK 49 84 270 83660 0.417 0.154 0.632 0.122 0.12 

50mm/06h 

HMW 81 789 105 82362 4.677 0.435 0.907 0.083 0.081 

NOW 23 101 189 88318 0.585 0.108 0.815 0.073 0.073 

MVK 23 42 176 83822 0.327 0.116 0.646 0.095 0.095 

60mm/06h 

HMW 50 698 66 82523 6.448 0.431 0.933 0.061 0.06 

NOW 11 60 120 88440 0.542 0.084 0.845 0.058 0.057 

MVK 12 29 111 83911 0.333 0.098 0.707 0.079 0.079 

70mm/06h 

HMW 37 607 43 82650 8.05 0.463 0.943 0.054 0.053 

NOW 6 33 82 88510 0.443 0.068 0.846 0.05 0.049 

MVK 7 20 78 83958 0.318 0.082 0.741 0.067 0.066 

80mm/06h 

HMW 25 537 30 82745 10.218 0.455 0.956 0.042 0.042 

NOW 3 19 58 88551 0.361 0.049 0.864 0.037 0.037 

MVK 5 16 53 83989 0.362 0.086 0.762 0.068 0.067 

90mm/06h 

HMW 14 493 19 82811 15.364 0.424 0.972 0.027 0.026 

NOW 1 14 36 88580 0.405 0.027 0.933 0.02 0.019 

MVK 2 16 34 84011 0.5 0.056 0.889 0.038 0.038 

100mm/06h 

HMW 6 457 14 82860 23.15 0.3 0.987 0.013 0.012 

NOW 0 10 23 88598 0.435 0 1 0 0 

MVK 2 8 20 84033 0.455 0.091 0.8 0.067 0.067 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 

Figure 5.  (a) Threat scores (TS); (b) Probability of detection (POD); (c) False alarm rate (FAR); (d) 
Equitable threat score (ETS); (e) BIAS of GSMaP_MVK (MVK; green), GSMaP_NOW (NOW; red) 
and Himawari–8 (HMW; orange). 

The values of TSHMW are close to TSNOW but slightly larger than TSNOW at most 
thresholds except for 30 to 40 mm/06h thresholds. Figure 6 shows POD. PODHMW is larger 
than PODNOW and PODMVK at most thresholds except for 1 mm/6h. POD of MVK is larger 
than NOW except for 30 and 40 mm/6h thresholds. When precipitation is overestimated, the 
value of POD tends to be large, but it does not mean that the estimate is good. Therefore, 
POD should be checked with FAR. As seen in Figure 5c, FARHMW is the largest for thresholds 
from 1 to 95 mm/6h. This is consistent with the results on MEHMW and RMSEHMW where 
MEHMW is positive and RMSEHMW is the largest (19.77 mm).  

In FAR (Figure 5c), FARHMW (orange) is always the largest except for 100 mm/6h 
threshold, suggesting its overestimation of rains. NOW has the second largest false alarm, 
and the red line is between the green and orange lines. FARMVK is the smallest at all 
thresholds. The overall trend of ETSMVK, ETSNOW and ETSHMW (Figure 5d) is like those of 
TS (Figure 5a), as ETSMVK is the largest at all thresholds, and the values of ETSHMW and 
ETSNOW are similar. The relationship between the ETSHMW and ETSNOW is also almost the 
same as in TS, but at the threshold of 01 mm/06h ETSNOW is larger than ETSHMW, and around 
30 to 40 mm/06h superiority of ETSNOW against ETSHMW is more distinct in ETS (Table 4). 
Generally, ETS has a merit to offset the false gain by overestimation in TS, but in our case, 
the merit was not large due to the smallness of hitrandom (Eq. 9). Calculation results of BIAS 
values of NOW, MVK and HMW are shown in Figure.5e. The BIASNOW and BIASMVK are 
less than 1 at all rainfall thresholds. This is consistent with MENOW and MEMVK. In contrast, 
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BIASHMW is less than 1 at only 01 mm/06h threshold then increases rapidly with rainfall 
thresholds. BIASHMW is extremely large for intense rains as shown in Table 4 (e.g., 24 at 100 
mm/06h threshold). 

Here we show an example of rainfall overestimation by HMW on October 7–8, 2019 in 
Thai Binh province, the northeast coastal area of Vietnam. Thai Binh Rain gauge station has 
coordinates of 20.4oN and 106.4oE (Table 2). At the station location, HMW 6–hour rainfall 
estimation from 18 UTC 07 October 2019 to 00UTC 08 October 2019 was 324.6 mm. This 
value is 12 times larger than the actual observed value (27 mm). Estimated rainfall from 
MVK and NOW are 46.8 mm and 54.2 mm, respectively (Figure 6).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Six–hour estimated rainfall from 18 UTC 07 October 2019 to 00 UTC 08 October 2019: 
(a) Himawari–8; (b) GSMaP_MVK; (c) GSMaP_NOW; (d) SYNOP rain gauges. 

Figure 7 is Himawari–8 IR images at 19 UTC 7 October 2019, and Figure 9 indicates 
the time sequence of the brightness temperatures (TBB) around Thai Binh station and 
corresponding rainfall estimates by Himawari-8 (HMW). TBB around Thai Binh at 19 and 20 
UTC were –75.3 oC and –70.1 oC, respectively, and in these two times HMW recorded the 
largest values as 70.75 mm/h and 85.96 mm/h. As discussed in [5], to give rainfall estimation 
from Himawari–8, AMO uses relationship between TBB and rainfall intensity R:  

 
R= 1.1183*1011exp(–3.6382*10-2TBB

1.2)      (11) 

This relationship (Figure 8) is based on statistics between TBB observed by GOES 
satellite and radar–estimated rainfall over north America [4]. 
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Figure 7. Infrared image by geostationary satellite (Himawari–8) at 19z 7 October 2019. 

 
Figure 8. Relationship between TBB and rainfall rate [4]. 

 
 

Figure 9. Horizontal distribution of Himawari–8 6–hour precipitation estimate at Thai Binh station. 

Figure 10 is the time variation of 06 hours accumulated rainfall from NOW (red line), 
MVK (green line), HMW (orange line) and 06h rain gauge (black line) in 5 heavy rainfalls 
in Vietnam from October 2019 to the end of January 2020. In general, the rainfall estimated 
from NOW, MVK and HMW show precipitation changes. The shapes of yellow, red, orange 
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lines are quite like black line. However, specifically in each rain, rainfall estimates from 
NOW, MVK and HMW also have differences. 

(a) 
 

(b) 

(c) (d) 

(e) 

 

Figure 10. variation of 06 hours accumulated rainfall from NOW (red line), MVK (green line), 
HMW (orange line) and 06h rain gauge (black line) in 5 heavy rainfalls in Vietnam from October 
2019 to the end of January 2020. 

From 14th to 19th Oct (Figure 10a), rainfall estimated from NOW and MVK tend to be 
lower than observed. The black line is above the red line and the blue line. The rainfall 
estimated from HMW is higher than NOW and MVK and quite like the observed. From 30th 

Oct to 01st Nov (Figure 10b), rainfall estimated from NOW, MVK showed the variation of 
rainfall. Rainfall increased gradually and peaked during the 12UTC 30th to 00UTC on 31st 
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October period, then it dropped. Estimation of rain from HMW also shows this trend, 
however, the maximum rainfall of HMW is too large compared to the observed. Maximum 
value of HMW is 73mm. In fact, the maximum of rain gauge is just over 30mm. From 01st 
to 04th Nov (Figure 10c), before 12UTC 02nd NOV, the rainfall estimates from NOW, MVK 
and HMW all tended to be lower than rain gauge. After this point of time, the precipitation 
estimated from them tend to overestimate the rainfall which observed. From 12UTC 02nd 
Nov to 12UTC 03rd Nov, HMW gave the highest rainfall estimate. NOW has the highest 
rainfall estimate in the remaining period. Figure 10d shows the NOW, MVK, HMW 
estimated rainfall reflect actual precipitation patterns. The rainfall increased and decreased 
rapidly before and after the 06UTC–12UTC 10th Nov. However, the rainfall estimates are 
lower than reality. The most obvious low rainfall estimations occurred from 00UTC to 
18UTC 25th Nov (Figure 10e). Most of the time, the 06h accumulated rainfall estimations are 
smaller than observed. In particular, the rainfall from the HMW is very small during this rain 
period. 

4. Summary and concluding remarks 

This study verified the quality of three rainfall estimates by GSMaP_NOW, 
GSMaP_MVK and Himawari–8 against 6–hour rain gauge data from 184 SYNOP stations 
for a 4–month period from October 2019 to January 2020. The three types of data were 
positively correlated with the observed rainfall. In particular, GSMaP_MVK has the highest 
correlation. The rainfall estimated from Himawari–8 was excessive compared with the actual 
data and has the largest RMSE. GSMaP_NOW and GSMaP_MVK rainfall estimates were 
slightly lower than actual ones. The RMSE of GSMaP_MVK was the smallest among the 
three estimates. GSMaP_MVK has the best rainfall estimation skills of the three data types 
in FAR, TS and ETS in all thresholds. TSHMW was slightly larger than TSNOW except from 
30to 40mm/6h thresholds. PODHMW was the largest, but this is derived from HWM's 
excessive rainfall estimates, because FARHMW value was the largest. The PODMVK was larger 
than PODNOW and the FARMVK was smaller than FARNOW. 

The excessive rainfall estimates by Himawari–8 seen in this study is very different from 
the results in Saito et al. (2020) [5], which verified the three rainfall estimates against AWS 
3–h rains for the case of the Da Nang heavy rainfall event in December 2018. Targeted 
rainfall in Saito et al. (2020) [5] was mainly brought by a precipitation system whose cloud 
top was not high, and warm rain process was likely dominant. In the Da Nang heavy rainfall 
event, Himawari–8 drastically underestimated intense rains. Contrary, Himawari–8 tends to 
overestimate intense rains if could top brightness temperature is extremely low. Such the 
cases easily occur not only by deep convection but by dense cirrus and anvil overcast. 

In conclusion, GSMaP_MVKwasthe best rainfall estimate amongthe three data, but due 
to a delay of 3–4 days, it is not applicable to the operational forecasting and warning. 
Consequently, itis recommended to use GSMaP_MVK mainly for verification of NWP 
rainfall. GSMaP_NOW has a relatively good rainfall estimate, which can be used in parallel 
with Himawari–8 rainfall estimates to provide realtime information to the forecasters in 
forecasting and warning on the heavy rainfall, flash flood andlandslide. 
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