1 Ho Chi Minh City University of Natural Resources and Environment;

2Institute of Environment and Natural Resources, Vietnam National University Ho Chi Minh City;

3 University of Technology;

4 Vietnam National University Ho Chi Minh City;

5 Institute of Computational Science and Technology;



Tidal currents are often the dominant source of current variability and play an important role in shaping coastal bottom topography. In this paper, the authors applied a hydraulic model in curvilinear coordinates to calculate 4 main tidal constituents, namely K1, O1, M2 and S2 in a region from Vung Tau–Bac Lieu, Viet Nam. The hydraulic model with the two–dimensional orthogonal curvilinear grid has the advantage of increasing the accuracy of the results at the domain boundary. The numerical method of this model derives from the solution of the Reynolds system of equations averaged over depths in the curvilinear coordinate systems. The model verification is implemented based on the equilibrium of the tidal currents of energy. The result of this model is used to map ellipse constituents and help understand more about the tidal deposition from Vung Tau to Bac Lieu, Viet Nam. The results recorded that the residual tidal ellipse M2 from Vung Tau–Bac Lieu, the greatest ellipses are M2, followed by the tidal constituents K1, O1 and S2. This rotation of the ellipse is almost the same with clockwise.


Cite this paper

Kim, T.T.; Long, N.K.T.; Hong, N.T.T.; Phung, N.K.; Bay, N.T. Mapping the residual tidal ellipse from Vung Tau–Bac Lieu, Viet Nam by using a numerical model in curvilinear coordinate. VN J. Hydrometeorol. 20218, 50-63. 


1. Parker, B.B. Tidal analysis and prediction. Silver Spring, Maryland 2007, pp. 388.

2. Xu, Z. Ellipse parameters conversion and vertical velocity profiles for tidal currents. Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada. 2000, pp. 20.

3. Stanton, B.R.; Goring, D.G.; Bell, R.G. Observed and modelled tidal currents in the New Zealand region. N. Z. J. Mar. Freshw. Res. 2001, 35(2), 397–415.

4. Dias, J.M.; Valentim, J.M. Numerical modeling of Tagus estuary tidal dynamics. J. Coast. Res. 2011, 64, 1495–1499.

5. Jung, K.Y.; Ro, Y.J.; Kim, B.J. Characteristics of tidal current and tidal residual current in the Chunsu Bay, Yellow Sea, Korea based on numerical modeling experiments. J. Korean Soc. Coast. Ocean Eng. 2013, 25(4), 207–218.

6  Mandal, S.; Sil, S.; Gangopadhyay, A.; Murty, T.; Swain, D. On extracting high–frequency tidal variability from HF radar data in the northwestern Bay of Bengal. J. Oper. Oceanogr. 2018, 11(2), 65–81.

7.  Ahmed, S.N.; Siddiqa, T. The study of tidal current dynamics and impact of bathymetry in training the currents along the Coast of Karachi, Pakistan. Int. J. Marine Sci. Ocean Technol. 2019, 6(1), 110–116.

8. Long, B.H.; Chung, T.V. Caculations of tidal currents in the North Danger reef using finite element method. Proceedings of National Conference "Bien Dong – 2007", 2007.

9. Phan, H.M.; Ye, Q.; Reniers, A.J.H.M.; Stive, M.J.F. Tidal wave propagation along The Mekong deltaic coast. Estuarine Coast. Shelf Sci. 2019, 220, 73–98.

10. Kim, T.T.; Long, N.K.T.; Phuoc, N.V.; Phung, N.K.; Bay, N.T. A coupled hydraulic and sediment transport model in the curvilinear coordinate. VN J. Hydrometeorol. 2021, 728, 14–30.

11. Androsov, A.A.; Klevanny, K.A.; Salusti, E.S.; Voltzinger, N.E. Open boundary conditions for horizontal 2–D curvilinear–grid long–wave dynamics of a strait. Adv. Water Resour. 1995, 18(5), 267–276.

12. Massel, S.R. Hydrodynamics of coastal zones. Amsterdam: Elsevier 1989, 48,  336.

13. Fletcher, C.A.J. Computational Techniques for Fluid Dynamics. Mir, Moscow 1991, 2. (Russian translation)

14. Thompson, J.F.; Warsi, Z.U.A.; Mastin, C.W. Numerical grid generation: Foundations and Applications. North–holland Amsterdam: Elsevier, 1985.

15.  Bay, N.T.; Phung, N.K. Some study results for the tide in Tonkin gulf. Proceedings of the fourth National Conference of Marine science and technology. 1998.

16.  Androsov, A.A.; Kagan, B.A.; Romanenkov, D.A.; Voltzinger, N.E. Numerical modelling of barotropic tidal dynamics in the strait of Messina. Adv. Water Resour. 2002, 25(4), 401–415.