1 Department of Agriculture and Rural Development of Dong Thap province;

2 Faculty of Water Resource Engineering, College of Engineering, Can Tho University;;;

3 Seu Do Solutions Limited Liability Company;

4 Kim Long Ca Mau Limited Liability Company;

*Corresponding author:; Tel.: +84–906975999


This study conducts a critical examination of the Longshore Sediment Transport Rate (LSTR) along Cua Can Beach in Phu Quoc City, Kien Giang Province. This notable pocket beach is characterized by its natural beauty and burgeoning tourist developments. The escalating construction of tourist facilities and resorts in close proximity to the shoreline, without considering beach morphological changes, poses a significant threat to the coastal integrity and sustainable development of the region. In response to this concern, our research aims to estimate the LSTR on the west coast of Phu Quoc to advocate for informed coastal engineering management and sustainable development strategies. Employing an integrated methodology that combines remote sensing with a simplistic one-line model, this study provides a comprehensive assessment of sediment dynamics along Cua Can Beach. The findings reveal consistent annual sediment transport from south to north, with an estimated quantity ranging from 5,000 to 20,000 m³ per year.


Cite this paper

Huy, N.A.; Ty, T.V.; Duy, D.V.; Dat, P.T.; Man, T.K.; Dat, N.T.T.; Choi, Q.V. Longshore sediment transport rate at a pocket beach in Phu Quoc City, Kien Giang Province, Vietnam. J. Hydro-Meteorol. 2024, 19, 23-35.


1. Tuyet, D.T.; Thuy, N.T.T.; Nhan, D.V.; Hoang, N.T.T.; . The potential and direction for tourism development after Covid-19 in Vietnam. OSF Preprints aduc8, Center for Open Science. 2022.

2. Tin, H.T.; Vinh, B.T. Mechanism of beach erosion at the west of Phu Quoc Island, Southern Vietnam. VN J. Earth Sci. 2014, 36(1), 69–74.

3. Sanil Kumar, V.; et al., Longshore sediment transport rate–measurement and estimation, central west coast of India. Coastal Eng. 2003, 48(2), 95–109.

4. Van Rijn, L.C. Longshore sand transport, in Coastal Engineering 2002: Solving Coastal Conundrums. World Scientific, 2003, pp. 2439–2451.

5. Kraus, N.C. Application of portable traps for obtaining point measurements of sediment transport rates in the surf zone. J. Coastal Res. 1987, 3(2), 139–152.

6. Rosati, J.D.; Kraus, N.C. Hydraulic test of streamer sediment trap. J. Hydraul. Eng. 1988, 114(12), 1527–1532.

7. Majewski, W. Field Studies on Sand Movement in the Coastal Zone (A Monograph) Polish Academy of Sciences. Poland, 1989.

8. Miller, H.C. Field measurements of longshore sediment transport during storms. Coastal Eng. 1999, 36(4), 301–321.

9. Noujas, V.; Kankara, R.; Rasheed, K. Estimation of longshore sediment transport rate for a typical pocket beach along west coast of India. Mar. Geod. 2018, 41(2), 201–216.

10. Oh, J.E.; Chang, Y.S.; Jeong, W.M.; Kim, K.H.; Ryu, K.H. Estimation of longshore sediment transport using video monitoring shoreline data. J. Mar. Sci. Eng. 2020, 8, 572.

11. Liang, T.Y.; Chang, C.H.; Hsiao, S.C.; Huang, W.P.; Chang, T.Y.; Guo, W.D.; Liu, C.H.; Ho, J.Y.; Chen, W.B. On-site investigations of coastal erosion and accretion for the northeast of Taiwan. J. Mar. Sci. Eng. 2022, 10(2), 282.

12. Larson, M.; Kraus, N.C.; Hanson, H. Simulation of regional longshore sediment transport and coastal evolution–the “Cascade” model. Coastal Eng. 2002, pp. 2612–2624.

13. Ellis, J.; Stone, G.W. Numerical simulation of net longshore sediment transport and granulometry of surficial sediments along Chandeleur Island, Louisiana, USA. Mar. Geod. 2006, 232(3), 115–129.

14. Nguyen, X.T.; Tran, M.T.; Tanaka, H.; Nguyen, T.V.; Mitobe, Y.; Duong, C.D. Numerical investigation of the effect of seasonal variations of depth-of-closure on shoreline evolution. Int. J. Sediment Res. 2021, 36(1), 1–16.

15. Xing, H.; Li, P.; Zhang, L.; Xue, H.; Shi, H.; You, Z. Numerical simulation of the beach response mechanism under Typhoon Lekima: A case study of the Southern Beach of Chudao. J. Mar. Sci. Eng. 2023, 11(6), 1156.

16. Parthasarathy, K.; Deka, P.C. Remote sensing and GIS application in assessment of coastal vulnerability and shoreline changes: A review. ISH J. Hydraul. Eng. 2021, 27(sup1), 588–600.

17. Pelnard-Considère, R. Essai de theorie de l’evolution des formes de rivage en plages de sable et de galets. J. de L'hydraulique 1957, 4(1), 289–298.

18. Nguyen, Q.H.; Xuan, H.L. Trend analysis of rainfall in the Phu Quoc Island. VNU J. Sci.: Earth Environ. Sci. 2021, 37(4), 22–32.

19. Pitas, I. Digital image processing algorithms and applications. John Wiley & Sons, 2000.

20. Hoang, V.C.; Tanaka, H.; Mitobe, Y. A method for correcting tidal effect on shoreline position extracted from an image with unknown capture time. Geosciences 2017, 7(3), 62.

21. Dolan, R.; Fenster, M.S.; Holme, S.J. Temporal analysis of shoreline recession and accretion. J. Coastal Res. 1991, 7(3), 723–744.

22. Duy, D.V.; Ty, T.V.; Thanh, T.N.; Minh, H.V.T.; De, C.V.; Duong, V.H.T.; Dan, T.C.; Viet, N.T.; Tanaka, H. Sand spit morphology at an inlet on Phu Quoc Island, Vietnam. Water 2023, 15(10), 1941.