1 VNU Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam;;;

*Correspondence:; Tel.: +84–972355393


This study aims to evaluating characteristics of rainfall simulated by Non–Hydrostatic Regional Climate Model (NHRCM) over seven sub–regions of Vietnam during the 1981–2001 period. Features such as seasonal cycle of monthly average daily rainfall, maximum daily rainfall, and frequencies at different thresholds are compared with observations. Statistical evaluations of errors and correlation coefficient are also examined to see the differences between model results and observations. The results show that NHRCM captured well the seasonal cycle of the simulated monthly average daily rainfall, but magnitudes are underestimated in all sub–regions except South Central Vietnam (N1). Generally, underestimations of the simulated daily rainfall are observed in almost all months and sub–regions, higher differences are found in rainy months and the most underestimation of rainfall is observed in South Vietnam (N3). Correlation coefficients over 0.6 are found in North West Vietnam (B1) and South Vietnam (N3). Monthly absolute maxima of the observed daily rainfall are found in North Central (B4) in transition months when the model usually underestimated significantly. In addition, NHRCM tends to simulate cases with rainfall amounts below 16 mm/day or above 50 mm/day with higher frequencies compared with the observations. In contrast, frequencies detected by NHRCM seem to be lower than those of the observations for rainfall amount in 16 – 50 mm/day, especially in sub–regions N2 and N3. These results are supportive for applying the Regional Climate Model in simulating rainfall characteristics over Vietnam, especially for Non–Hydrostatic version.


Cite this paper

Ha, P.T.; Hang, V.T.; Truong, N.M. Evaluation of rainfall characteristics over Vietnam simulated by the Non–Hydrostatic Regional Climate Model – NHRCM during the 1981–2001 period. VN J. Hydrometeorol. 2022, 11, 72-82. 


1. Wang, B.; Ho, L. Rainy season of the Asian–Pacific summer monsoon. J. Climate. 2000, 15, 386–398.

2. Dickinson, R.E.; Errico, R.M.; Giorgi, F.; Bates, G.T. A regional climate model for the western United States. Clim. Change. 1989, 15, 383–422.

3. Giorgi, F.; Bates, G.T. The climatological skill of a regional model over complex terrain. Mon. Wea. Rev. 1989, 117, 2325–2347.

4. Giorgi, F. On the simulation of regional climate using a limited area model nested in a general circulation model. J. Climate. 1990, 3, 941–963.

5. Kida, H.; Koide, T.; Sasaki, H.; Chiba, M. A new approach to coupling a limited area model with a GCM for regional climate simulations. J. Meteor. Soc. Japan. 1991, 69, 723–728.

6. Liang, X.Z.; Li, L.; Kunkel, K. Regional climate model simulation of US precipitation during 1982–2002 – part I: annual cycle. J. Clim. 2004, 17, 3510–3528.

7. Reboita, M. S.; da Rocha, R. P.; Ambrizzi, T.; Sugahara, S. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim. Dynam. 2010, 35, 1331–1347.

8. Sasaki, H.; Kurihara, K.; Takayabu, I.; Uchiyama, T. Preliminary experiments of reproducing the present climate using the Non–hydrostatic Regional Climate Model. SOLA. 2008, 4, 25–28, doi:10.2151/sola.2008-007.

9. Rauscher, S.; Coppola, E.; Piani, C.; Giorgi, F. Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim. Dynam. 2010, 35, 685–711.

10. Terink, W.; Hurkmans, R.T.W.L.; Torfs, P.J.J.F.; Uijlenhoet, R. Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin. Hydrol. Earth Syst. Sci. 2010, 14, 687–703.

11. Sasaki, H.; Murata, A.; Hanafusa, M.; Oh’izumi, M.; Kurihara, K. Reproducibility of present climate in a Non–Hydrostatic Regional Climate Model nested within an Atmosphere General Circulation Model. SOLA. 2011, 7, 173–176. doi:10.2151/sola.2011-044.

12. Iizumi, T.; Nishimori, M.; Dairaku, K.; Adachi, S. A.; Yokozawa, M. Evaluation and intercomparison of downscaled daily precipitation indices over Japan in present–day climate: Strengths and weaknesses of dynamical and bias correction–type statistical downscaling methods. J. Geophys. Res. 2011, 116. doi:10.1029/2010JD014513.

13. Cruz, F.T.; Sasaki, H. Simulation of present climate over Southeast Asia using the Non–hydrostatic Regional Climate Model. SOLA. 2017, 13, 13–18, doi:10.2151/sola.2017-003.

14. Ngo–Duc, T.; Nguyen, Q.T.; Trinh, T.L.; Vu, T.H.; Phan, V.T.; Pham, V.C. Near future climate projections over the Red River Delta of Vietnam using the Regional Climate Model Version 3. Sains Malaysiana. 201241(11), 1325–1334.

15. Xin, K.T.; Hang, V.T.; Duc, L.; Linh, N.M. Climate simulation in Vietnam using regional climate nonhydrostatic NHRCM and hydrostatic RegCM models.  VN J. Nat. Sci. Technol. 2013, 29(2S), 243–251.

16. Hang, V.T.; Hanh, N.T. Monthly temperature and precipitation seasonal forecast over Vietnam using clWRF model. VN J. Earth Environ. Sci. 2014, 30(1), 31–40. 

17. Kieu–Thi, X.; Vu–Thanh, H.; Nguyen–Minh, T.; Le, D.; Nguyen–Manh, L.; Takayabu, I.; Sasaki, H.; Kitoh, A. Rainfall and tropical cyclone activity over Vietnam simulated and projected by the Non–Hydrostatic Regional Climate Model – NHRCM. J. Meteor. Soc. Japan. 2016, 94A, 135–150. doi:10.2151/jmsj.2015-057.

18. Dee, D.P.; et al. The ERA–Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 2011, 137, 553–597.

19. Saito, K.; Fujita, T.; Yamada, Y.; Ishida, J.; Kumagai, Y.; Aramani, K.; Ohmori, A.; Nagasawa, R.; Kumagai, S.; Muroi, C.; Kato, T.; Eito, H.; Yamazaki, Y. The operational JMA Nonhydrostatic Mesoscale Model. Mon. Wea. Rev. 2006, 134, 1266–1298.

20. Kain, J.; Fritsch, J. Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Mongor., Amer. Meteor. Soc. 1993, 46, 165–170.

21. Hirai, M.; Sakashita T.; Kitagawa, H.; Tsuyuki, T.; Hosaka, M.; Oh’izumi, M. Development and validation of a new land surface model for JMA’s operational global model using the CEOP observation dataset. J. Meteor. Soc. Japan. 2007, 85A, 1–24.

22. Mizuta, R.; Yoshimura, H.; Murakami, H.; Matsueda, M.; Endo, H.; Ose, T.; Kamiguchi, K.; Hosaka, M.; Sugi, M.; Yukimoto, S.; Kusunoki, S.; Kitoh, A. Climate simulations using AGCM3.2 with 20–km grid. J. Meteor. Soc. Japan. 2012, 90A, 233–258.

23. Rayner, N.A.; Parker, D.E.; Horton, E.B.; Follan, C.K.; Alexander, L.V.; Rowell, D. P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, D14, 4407. doi:10.1029/2002JD002670.