1 Hanoi University of Natural Resources and Environment, Vietnam;

2 Hanoi University of Civil Engineering, Vietnam;

3 Thuyloi University, Vietnam;

4 Delft University of Technology, the Netherlands;

5 Ministry of Agriculture and Rural Development, Vietnam;

*Corresponding author:; Tel.: +84–395357993


The application of brushwood fences along the Mekong deltaic coast has recently played a significant role in wave damping and promoting sedimentation. The insight mechanism of brushwood fence for wave energy reduction is the bulk drag coefficient that is also linked to the well-known Forchheimer coefficients (a, b). The bulk drag coefficient was then applied in the SWASH model for validation in its implementation model, the vegetation model, and showed a good comparison with the physical model in the same settings. The porosity model in the SWASH model applied the Forchheimer coefficient has not been used for validation even though the strong links between the  and the a, b were indicated. In this study, the validation of wave-fence interaction in the porosity model of the SWASH model is presented and compared to the vegetation model in the previous study. The results show a good agreement of wave heights and wave spectrum between the physical, vegetation and porosity models. Furthermore, the computational and physical model errors, such as BIAS and SI values, are less than 1 mm and 10%, respectively.


Cite this paper

Tung, H.D.; Mai, T.; Mai, C.; Tuan, D.T.M. An alternative calibration method for wave-fence interaction in SWASH model. VN J. Hydrometeorol. 2022, 12, 23-32. 


1. Schoonees, T.; Mancheño, A.G.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard structures for coastal protection, towards greener designs. Estuaries Coasts 2019, 42(7), 1709–1729.

2. Duke, N.; Wilson, N.; Mackenzie, J.; Nguyen, H.H.; Puller, D. Assessment of Mangrove Forests, shoreline condition and feasibility for REDD in Kien Giang Province, Vietnam, Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), 2010, pp. 1–128.

3. Schmitt, K.; Albers, T. Area coastal protection and the use of bamboo breakwaters in the Mekong Delta. Coastal Disasters Clim. Change Vietnam, Elsevier 2014, 107–132.

4. Albers, T.; San, D.C.;  Schmitt, K. Shoreline Management Guidelines: Coastal Protection in the Lower Mekong Delta, GIZ. Eschborn, Germany, 2013.

5. Van Cuong, C.; Brown, S.; To, H.H.; Hockings, M. Using Melaleuca fences as soft coastal engineering for mangrove restoration in Kien Giang, Vietnam. Ecol. Eng. 2015, 81, 256–265.

6. Van, C.M.; Ngo, A.; Mai, T.; Dao, H.T. Bamboo Fences as a Nature-Based Measure for Coastal Wetland Protection in Vietnam. Front Mar. Sci. 2021, 8, 1430.

7. Dao, T.; Stive, M.J.F.; Hofland, B.; Mai, T. Wave Damping due to Wooden Fences along Mangrove Coasts. J. Coastal Res. 2018, 34(6), 1317–1327. doi: 10.2112/JCOASTRES-D-18-00015.1.

8. Tri, M.C.; Vuong, N.V.; Dat, H.D.; Anh, N.T.T.; Tung, D.H. Numerical simulation of wave transmitting through a bamboo fence. J. Sci. Technol. Civil Eng. 2019, 13(1V), 75–83. (In Vietnamese)

9. Dao, H.T.; Hofland, B.; Suzuki, T.; Stive, M.J.F.; Mai, T.; Tuan, L.X. Numerical and small-scale physical modelling of wave transmission by wooden fences. J. Coastal Hydraul. Struct. 2021, 1(4), 1–21.

10. Dao, H.T.; Hofland, B.; Stive, M.J.F.; Mai, T. Experimental assessment of the flow resistance of coastal wooden fences. Water 2020, 12(7), 1910.

11. Williamson, C.H.K. The natural and forced formation of spot-like “vortex dislocations” in the transition of a wake. J. Fluid Mech. 1992, 243, 393–441.

12. Schewe, G. On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 1983, 133, 265–285.

13. Lou, S.; Chen, M.; Ma, G.; Liu, S.; Zhong, G. Laboratory study of the effect of vertically varying vegetation density on waves, currents and wave-current interactions. Appl. Ocean Res. 2018, 79, 74–87.

14. Zdravkovich, M.M. Flow induced oscillations of two interfering circular cylinders, J. Sound Vib. 1985, 101(4), 511–521.

15. Darcy, H.P.G. Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc. V. Dalamont, 1856.

16. Forchheimer, P. Wasserbewegung durch boden. Z. Ver. Deutsch Ing. 1901, 45, 1782–1788.

17. Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94.

18. van Gent, M.R.A. Wave interaction with permeable coastal structures. Int. J. Rock Mech. Min. Sci. Geomech. 1996, 6(33), 277A.

19. Zijlema, M.; Stelling, G.; Smit, P. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Eng. 2011, 58(10), 992–1012.

20. Smit, P.; Zijlema, M.; Stelling, G. Depth-induced wave breaking in a non-hydrostatic, nearshore wave model. Coastal Eng. 2013, 76, 1–16.

21. Suzuki, T.; Hu, Z.; Kumada, K.;  Phan, L.K.; Zijlema, M. Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields. Coastal Eng. 2019, 149, 49–64.

22. Zijlema, M. Modelling wave transformation across a fringing reef using SWASH. Coastal Eng. Proc. 2012, 33, 1–12.