1 HUTECH University of Technology, Ho Chi Minh City, Vietnam;

2 Ho Chi Minh University of Natural Resources and Environment, Ho Chi Minh City, Vietnam;;

3 Tay Nguyen University, Buon Ma Thuot – Dak Lak, Vietnam;

*Corresponding Author:; Tel.: +84–966687548


The article studies the occurrence of microplastics in the inlet and outlet wastewater streams at wastewater treatment plants in the Saigon-Dong Nai river basin, Vietnam and provide a suitable removal solution. The sampling method is suitable for the actual conditions of Vietnam combined with the application of Fourier-transform infrared spectroscopy to analyze the microplastic composition in the sample. The results show that microplastics exist in many different shapes and colors. Density of microplastics in the inlet stream is from 10.188-15.074 gL-1. Density of microplastics in the outlet stream is from 0.684-2.107 gL-1. In which, filaments with an average length of 524.68 μm and an average radius of 100.4 μm; slender form with an average length of 229.49 μm and an average width of 101.3-120.6 μm; granules with an average radius of 113.81μm. The removal efficiency of microplastics in the wastewater stream at the surveyed wastewater treatment plants ranges from 85.4% to 93.7% through the following main processes: pre-settlement, flotation, moving bed biofilm reactor, sedimentation, filtration. Solutions for the removal of microplastics from wastewater treatment plants in the Saigon - Dong Nai river basin were proposed and discussed.


Cite this paper

Phu, H.; Han, H.T.N.; Thao, N.L.N.; Ha, T.T.M. Microplastics and solutions to remove microplastics in wastewater from wastewater treatment plants in the Saigon–Dong Nai river basin, Vietnam. VN J. Hydrometeorol. 2022, 13, 1-13. 


1. Barnes, DK.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. Royal Soc. B: Biol. Sci, 2009, 364(1526), 1985–1998.  

2. Brooks, A.L.; Wang, S.; Jambeck, J.R. The Chinese import ban and its impact on global plastic waste trade. Sci. Adv. 2018, 4(6), 1–8.

3. Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Entradas de residuos plásticos desde la tierra al océano. Ciencia, 2015, 347(6223), 768–771.

4. WHO. Shortage of personal protective equipment endangering health workers worldwide. World Healthy Organization, 2020.

5. Yudell, M.; Roberts, D.; DeSalle, R.; Tishkoff, S. NIH must confront the use of race in science. Science 2020, 369(6509), 1314–1315.

6. La, V.P. Policy response, social media and science journalism for the sustainability of the public health system amid the COVID–19 outbreak: The vietnam lessons. Sustainability 2020, 12(7), 2931.

7. Peng, Y.; Wu, P.; Schartup, A. T.; Zhang, Y. Plastic waste release caused by COVID–19 and its fate in the global ocean. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(47).

8. Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A. Plastic waste inputs from land into the ocean. Science 2015, 347(6223), 768–771.

9. Kieu Le, T.C.; Strady, E.; Perset, M. Life Cycle of Floating Debris in the Canals of Ho Chi Minh City (PADDI), 2016.

10. Phu, H.; Han, H.T.N. Report of the Workshop “Microplastics in water and sediments of Saigon–Dong Nai river and risks to people’s health in Ho Chi Minh City”. Hutech Institute of Applied Sciences. Ho Chi Minh City University of Technology, 2021.

11. Raymond, G.; Gireeshkumar, B.; Quentin, D.; Morgan, T.; Alessandro, M.; Maria, G.D.; Onofrio, M.M.; Marc, L.L.C.; Florent, C.; Fabienne, L.; Pietro, G. Gucciardi. Raman Tweezers as a Tool for Small Microplastics and Nanoplastics Identification in Sea Water. Environ. Sci. Technol. 2019, 53(15), 9003–9013. doi:10.1021/acs.est.9b03105.

12. Eerkes–Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water. Res. 2015, 75, 63–82.

13. Mason, S.A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, K.; Barnes, J.; Fink, P.; Papazissimos, D.; Rogers, D.L. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 2016a, 218, 1045– 1054.

14. Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 2016, 50, 5800–5808.

15. Ziajahromi, S.; Neale, P.A.; Leusch, F.D. Wastewater treatment plant effluent as a source of microplastics: Review of the fate, chemical interactions and potential risks to aquatic organisms. Water Sci. Technol. 2016, 74, 2253–2269. Doi:10.2166/wst.2016.414.

16. Bui, X.T.; Vo, T.D.H.; Nguyen, P.T.; Nguyen, V.T.; Dao, T.S.; Nguyen, P.D. Microplastics pollution in wastewater: Characteristics, occurrence and removal technologies. Environ. Technolo. Innovation 2020, 101013.

17. Phu, H.; Han, H.T.N.; Thao, N.L. Plastic waste, microplastics in the Saigon – Dong Nai river basin, the risk of impacts on the health of people. VN J. Hydrometeorol. 2022, 736(1),14–27. Doi:10.36335/VNJHM.2022(736(1)).14-27.

18. Bayo, J.; Olmos, S.; López–Castellanos, J. Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. Chemosphere 2020, 238, 124593.

19. Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to microplastic pollution–Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 2017a, 123, 401–407.

20. Talvitie, J.; Mikola, A.; Setälä, O.; Heinonen, M.; Koistinen, A. How well is microlitter purified from wastewater? A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Res. 2017b, 109, 164 172.

21. Hidayaturrahman, H.; Lee, T.G. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar. Pollut. Bull. 2019, 146, 696–702.

22. Wang, Z.; Lin, T.; Chen, W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci. Total Environ. 2020, 700, 134520.

23. Magni, S.; Binelli, A.; Pittura, L.; Avio, C.G.; Della Torre, C.; Parenti, C.C.; Gorbi, S.; Regoli, F. The fate of microplastics in an Italian wastewater treatment plant. Sci. Total Environ. 2019, 652, 602–610.

24. Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 2018, 133, 236–246.

25. Zhang, Z.; Chen, Y. Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review. Chem. Eng. J. 2019, 122955.

26. Chen, R.; Qi, M.; Zhang, G.; Yi, C. Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield. IOP Conf. Ser.: Earth Environ. Sci. 2018, 012208.

27. Habib, R.Z.; Thiemann, T.; Kendi, R.A. Microplastics and wastewater treatment plants–A review. J. Water. Resour. Prot. 2020, 12(1), 1–35.

28. Michielssen, M.R.; Michielssen, E.R.; Ni, J.; Duhaime, M.B. Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environ. Sci. Water Res. Technol. 2016, 2(6), 1064–1073.

29. Liu, X.; Yuan, W.; Di, M.; Li, Z.; Wang, J. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chem. Eng. J. 2019, 362, 176–182.

30. Lapointe, M.; Farner, J.M.; Hernandez, L.M.; Tufenkji, N. Understanding and improving microplastics removal during water treatment: Impact of coagulation and flocculation. Environ. Sci. Technol. 2020, 54(14), 8719–8727.

31. Liu, W.L.; Wu, Y.; Zhang, S.J.; Gao, Y.Q.; Jiang, Y.; Horn, H.; Li, J. Successful granulation and microbial differentiation of activated sludge in anaerobic/anoxic/aerobic (A2O) reactor with two–zone sedimentation tank treating municipal sewage. Water Res. 2020b, 178, 115825.

32. Carr, S.A., Liu, J., Tesoro, A.G. Transport and fate of microplastic particles in wastewater treatment plants. Water. Res. 2016, 91, 174e182.

33. Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci.Technol. 2016, 50(11), 5800e5808.

34. Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 2015. 12(5), 592–599.

35. Michielssen, M.R.; Michielssen, E.R.; Ni, J.; Duhaime, M. Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environ. Sci. Water Res. Technol. 2016, 2(6), 1064-1073.

36. NOAA. Methods for the Analysis of Microplastics in the Marine Environment Recommendations for quantifying synthetic particles in water and sediments. Technical Memorandum NOS–OR&R–48, 2015.