Authors
Affiliations
1Vietnam Journal of Hydrometeorology, Viet Nam Meteorological and Hydrological Administration; doanquangtrikttv@gmail.com; tuyetkttv@gmail.com; vannhat.tv@gmail.com
*Corresponding author: doanquangtrikttv@gmail.com; Tel.: +84–988928471
Abstracts
The impact of climate change has become stronger in recent years, climate change has increased hydrometeorological disasters in which flooding is one of the natural disaster risks that have a strong impact on the economy. Bac Ninh province has a lot of industrial zones, thus, the study and assessment of flood damage to Bac Ninh industry is urgent. The study uses Analytical Hierarchy Process (AHP) method to estimate flood damage for industrial areas in Bac Ninh province. This study uses satellite images, land use map and flooded area of Bac Ninh province data to build a matrix to determine the weight of the vulnerability. The study results have calculated the vulnerability weight according to the land use situation, built a vulnerability map for the whole Bac Ninh province and assessment of industrial damage due to flooding for each district of Bac Ninh province.
Keywords
Cite this paper
Tri, D.Q.; Tuyet, Q.T.T.; Nhat, N.V. Assessment of the vulnerability to flooding in industrial areas in Bac Ninh Province. VN J. Hydrometeorol. 2022, 13, 14-24.
References
1. AnchorAHA Centre, JICA. Natural Disaster Risk Assessment and Area Business Continuity Plan Formulation for Industrial Agglomerated Areas in the ASEAN Region, Risk Profile Report - Hai Phong of Vietnam, 2015, pp. 140.
2. Gharbi, M.; Soualmia, A.; Dartus, D.; Masbernat, L. Floods effects on rivers morphological changes application to the Medjerda River in Tunisia. J. Hydrol. Hydromechanics 2016, 64, 56–66. https://doi.org/10.1515/johh-2016-0004.
3. Ryu, J.; Lee, D.K.; Park, C.; Ahn, Y.; Lee, S.; Choi, K.; Jung, T. Assessment of the vulnerability of industrial parks to flood in South Korea. Nat. Hazards 2016, 82, 811–825.
4. Mavhura, E. Analysing drivers of vulnerability to flooding: a systems approach. S. Afr. Geog. J. 2019, 101(1), 72–90. Doi:10.1080/03736245.2018.1541020.
5. AnchorLuu, C.; Tran, H.X.; Pham, B.T.; Al-Ansari, N.; Tran, T.Q.; Duong, N.Q.; Dao, N.H.; Nguyen, L.P.; Nguyen, H.D.; Ta, H.T.; Le, H.V.; von Meding, J. Framework of spatial flood risk assessment for a case study in Quang Binh province Vietnam. Sustainability 2020, 12(7), 3058. https://doi.org/10.3390/su12073058.
6. Sood, S.K.; Sandhu, R.; Singla, K.; Chang, V. IoT, big data and HPC based smart flood management framework, Sustain. Comput. Informatics Syst. 2018, 20, 102–117. https://doi.org/10.1016/j.suscom.2017.12.001.
7. Dimitrova, A.; Muttarak, R. After the floods: differential impacts of rainfall anomalies on child stunting in India. Global Environ. Change 2020, 64, 102130. https://doi.org/10.1016/j.gloenvcha.2020.102130.
8. Ahmed, F.; Moors, E.; Khan, M.S.A.; Warner, J.; Van Scheltinga, C.T. Tipping points in adaptation to urban flooding under climate change and urban growth: the case of the Dhaka megacity. Land Use Policy 2018, 79, 496–506.
9. Kumar, S.; Agarwal, A.; Ganapathy, A.; Villuri, V.G.K.; Pasupuleti, S.; Kumar, D.; Kaushal, D.R.; Gosain, A.K.; Sivakumar, B. Impact of climate change on stormwater drainage in urban areas. Stoch Environ Res Risk Assess 2022, 36, 77–96. https://doi.org/10.1007/s00477-021-02105-x.
10. Kryvasheyeu, Y.; Chen, H.; Obradovich, N.; Moro, E.; Hentenryck, P.V.; Fowler, J.; Cebrian, M. Rapid assessment of disaster damage using social media activity. Sci. Adv. 2016, 2, e1500779. https://doi.org/10.1126/sciadv.1500779.
11. Batica, J.; Gourbesville, P.; Hu, F.Y. Methodology for flood resilience index. International Conference on Flood Resilience Experiences in Asia and Europe – ICFR, 5-7 September, Exeter, United Kingdom, 2013.
12. Hammond, M.; Chen, A.S.; Batica, J.; Butler, D.; Djordjević, S.; Gourbesville, P.; Manojlović, N.; Mark, O.; Veerbeek, W. A new flood risk assessment framework for evaluating the effectiveness of policies to improve urban flood resilience. Urban Water J. 2018, 15(5), 427–436. https://doi.org/10.1080/1573062X.2018.1508598.
13. Bac Ninh Statistical Yearbook.
14. Downing, T.E.; Patwardhan, A.; Klein, R.J.T.; Mukhala, E.; Stephen, L.; Winograd, M.; Ziervogel, G. Assessing Vulnerability for Climate Adaptation; In Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures. Lim, B.; Spanger–Siegfried, E.; Burton, I.; Malone, E.; Huq, S. (Eds), Cambridge University Press, Cambridge, 2005.
15. Patwardhan, A.; Narayanan, K. Assessment of Vulnerability of Indian Coastal Zones to Climate Change. Proceeding of the conference on Water Resources, Coastal Zones and Human Health, 2003.
16. Iyengar, N.S.; Sudarshan, P. A Method of Classifying Regions from Multivariate Data. Econ. Political Weekly 1982, 17, 2047–2052. https://www.jstor.org/stable/4371674.
17. Kurek, K.A.; Heijman, W.; van Ophem, J.; Gędek, S.; Strojny, J. Measuring local competitiveness: comparing and integrating two methods PCA and AHP. Qual. Quant. 2022, 56, 1371–1389. https://doi.org/10.1007/s11135-021-01181-z.
18. Saaty, T.L. How to make a decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9−26.
19. Balica, S.F. Development and Application of Flood Vulnerability Indices for Various Spatial Scales. Master of Science Thesis, UNESCO–IHE, Institude for water education, 2007, pp. 157.
20. AnchorEdwards, J. Handbook for Vulnerability Mapping. EU Asia ProEco project, 2007.
21. Watts, M.J.; Bohle, H.G. The space of vulnerability: The causal structure of hunger and famine, Progress in Human Geography, 1993.
22. Decision 18/2021/QD–TTg Regulations on forecasting, warning, communication of natural disasters and disaster risk levels.