Authors

Affiliations

Ho Chi Minh City University of Natural Resources and Environment; ttlang@hcmunre.edu.vn; vy.npt251@gmail.com

*Corresponding author: ttlang@hcmunre.edu.vn; Tel.: +84−903983932

Abstracts

Nowadays, clean water is becoming more scarce. People are getting closer to the adverse effects of climate change, especially the people of Ben Tre province those are heavily affected by seawater intrusion every year. The electrodialysis (ED) model, combined with electrostatic attraction and membrane filtration, has shown the ability to handle nearly 30% of salt concentrations of 5.5−7.9 g/L. The experiment also showed that air bubbles occur when the voltage of the model is increased higher than 26V. The model also promised a stable foundation to develop into a larger−scale model with more treatment stages and low electricity consumption. Moreover, it is possible to reuse the products produced by the ED model with two separate streams: a concentrated stream that can be applied to separate salts and a dilute stream that can be used as domestic water.

Keywords

Cite this paper

Lang, T.T.; Vy, N.P.T. The research on electrodialysis model to treat brackish water in Ben Tre province. VN J. Hydrometeorol. 2022, 13, 82-89. 

References

1. Sadrzadeh, M.; Mohammadi, T. Sea water desalination using electrodialysis. Desalin  2008, 221(1–3), 440–447. Doi: 10.1016/j.desal.2007.01.103.

2. Sadrzadeh, M.; Mohammadi, T. Treatment of sea water using electrodialysis: Current efficiency evaluation. Desalin 2009, 249(1), 279–285. Doi: 10.1016/j.desal.2008.10.029.

3. Yang, Y.; Gao, X.; Fan, A.; Fu, L.; Gao, C. An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis. J. Memb. Sci. 2014, 449, 119–126. Doi: 10.1016/j.memsci.2013.07.066.

4. Liu, Y.; Wang, J.; Wang, L. An energy−saving ‘nanofiltration/ electrodialysis with polarity reversal (NF/EDR)’ integrated membrane process for seawater desalination. Part III. Optimization of the energy consumption in a demonstration operation. Desalin 2018, 452, 230–237. Doi: 10.1016/j.desal.2018.11.015.

5. Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 1979, 333(6043), 712–717. Doi: 10.1126/science.1200488.

6. Yen, F.C.; You, S.J.; Chang, T.C. Performance of electrodialysis reversal and reverse osmosis for reclaiming wastewater from high−tech industrial parks in Taiwan: A pilot−scale study. J Environ. Manage. 2017, 187, 393–400. Doi: 10.1016/j.jenvman.2016.11.001.

7. Ministry of Science and Technology. Report on the status of drought, salinity intrusion of  southern area of Vietnam 2019−2020, 2021.

8. Nguyen, L.D.; Gassara, S.; Bui, M.Q.; Zaviska, F.; Sistat, P.; Deratani, A.  Desalination and removal of pesticides from surface water in Mekong Delta by coupling electrodialysis and nanofiltration. Environ. Sci. Pollut. Res. 2019, 26(32), 32687–32697. doi: 10.1007/s11356-018-3918-6.

9. Cong, V.H. Desalination of brackish water for agriculture: Challenges and future perspectives for seawater intrusion areas in Vietnam. J. Water. Supply. Res. Technol. 2018, 67(3), 211–217. Doi: 10.2166/aqua.2018.094.

10. Murray, P. Electrodialysis and Electrodialysis Reversal − Manual of Water Supply Practices, M38 (1st Edition). 1995. Online Available: http://app.knovel.com/web/toc.v/cid:kpEERMWSP1/viewerType:toc/root_slug:electrodialysis−electrodialysis/url_slug:electrodialysis−electrodialysis?b−q=electrodialysis and electrodialysis reversal−manual&sort_on=default&b−subscription=TRUE&b−group−by=true&b−

11. Demircioglu, M.; Kabay, N.; Kurucaovali, I.; Ersoz, E. Demineralization by electrodialysis (ED)−separation performance and cost comparison for monovalent salts. Online Available: www.elsevier.com/locate/desal.

12. Shaposhnik, V.A.;  Kesore, K. An early history of electrodialysis with permit selective membranes. J. Memb. Sci. 1997, 136(1–2), 35–39. Doi: 10.1016/S0376-7388(97)00149-X.

13. Long, R.; Li, B.; Liu, Z.; Liu, W. Reverse electrodialysis: Modelling and performance analysis based on multi−objective optimization. Energy 2018, 151, 1–10. Doi: 10.1016/j.energy.2018.03.003.

14. Chehayeb, K.M.; Farhat, D.M.; Nayar, K.G.; Lienhard, J.H. Optimal design and operation of electrodialysis for brackish−water desalination and for high−salinity brine concentration. Desalin 2017, 420, 167–182. Doi: 10.1016/j.desal.2017.07.003.

15. Mohammadi, T.; Kaviani, A. Water shortage and seawater desalination by electrodialysis. ELSEVIER, 2003. Online Available: www.elsevier.com/locate/desal

16. Han, J.H. Electrode system for large−scale reverse electrodialysis: water electrolysis, bubble resistance, and inorganic scaling. J. Appl. Electrochem. 2019, 49(5), 517−528. Doi: 10.1007/s10800-019-01303-4.

17. Shi, L. In situ electrochemical oxidation in electrodialysis for antibiotics removal during nutrient recovery from pig manure digestion. Chem. Eng. J. 2021, 413, 127485. doi: 10.1016/j.cej.2020.127485.

18. Doornbusch, G.J.; Bel, T.M.; M.; Post, J.W.; Borneman, Z.;  Nijmeijer, K. Effect of membrane area and membrane properties in multistage electrodialysis on seawater desalination performance. J. Memb. Sci. 2020, 611, 118303. Doi: 10.1016/j.memsci.2020.118303.

19. Lee, H.J.; Strathmann, H.; Moon, S.H. Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity. Desalin 2006, 190(1–3), 43–50. Doi: 10.1016/j.desal.2005.08.004.

20. Strathmann, H.; Strathmann, H. Assessment of Electrodialysis Water Desalination Process Costs, 2004, pp. 32–54. Online Available: https://www.researchgate.net/publication/267765712.

21. Mir, N.; Bicer, Y. Integration of electrodialysis with renewable energy sources for sustainable freshwater production: A review. J. Environ. Manage. 2021, 289, 112496.  Doi: 10.1016/j.jenvman.2021.112496.