Authors

Affiliations

1 HUTECH Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu Street, Ward 25, Binh Thanh District, Ho Chi Minh City 700000, Vietnam; tt.nguyen@hutech.edu.vn; 6009220001@hufi.edu.vn; lochenni@gmail.com; tv.nam@hutech.edu.vn
2 Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City 700000, Vietnam; tt.nguyen@hutech.edu.vn; 6009220001@hufi.edu.vn
*Corresponding author: tv.nam@hutech.edu.vn; Tel: +84–945007990

Abstracts

Oil spills and contaminated water sources are responsible for polluting marine environments, which in turn has adverse effects on marine ecosystems and public health. Among various oil removal methods, adsorption is the preferred technique due to its speed, simplicity, low cost, and eco–friendliness. In this paper, we will review methods for modifying the oil adsorption properties of cellulose to enhance its adsorption capacity. We have reviewed 287 relevant worldwide documents in recent years and selected 142 documents for use in this study. The review results of the number of documents show that there are three main methods for transforming cellulose–based adsorbents, including (1) Physical transformation methods such as mechanical crushing, or pressing, heat treatment, and the plasma technique; (2) Chemical modification methods such as mercerization, acetylation, grafting, acidification, aerogel modification, cationic surfactant; and (3) Bioremediation (immobilization of microorganisms). Among these modification methods, cellulose–based aerogels have shown remarkable oil absorption capabilities of up to 170.0 g/g, superhydrophobicity (with a water contact angle of 156.7o), and the ability to be reused up to 80 times. Cellulase denaturation and microbial immobilization are eco–friendly techniques that have potential to replace non–biodegradable oil adsorbents. Furthermore, utilizing agricultural by–products to produce high–capacity absorbent materials is a promising solution that benefits both the economy and the environment.

Keywords

Cite this paper

Trinh, T.N.; Loc, N.D.; Nam, T.V. Modified methods of oil cleanup with cellulose–based adsorbents: a review. VN J. Hydrometeorol. 2023, 14, 96-120. 

References

1. Kolokoussis, P.; Karathanassi, V. Oil spill detection and mapping using sentinel 2 imagery. J. Mar. Sci. Eng. 2018, 6(1), 1–12. doi: 10.3390/jmse6010004.

2. Wardley–Smith, J. The control of oil pollution. Graham and Trotman Publication, London, UK. 1983.

3. Zamparas, M.; Tzivras, D.; Dracopoulos, V.; Ioannides, T. Application of sorbents for oil spill cleanup focusing on natural–based modified materials: A review. Molecules. 2020, 25, 4522. doi: 10.3390/molecules25194522.

4. Alaa El–Din, G.; Amer, A.A.; Malsh, G.; Hussein, M. Study on the use of banana peels for oil spill removal. Alexandria Eng. J. 2018, 57(3), 2061–2068. doi: 10.1016/j.aej.2017.05.020.

5. Gheorghiu, A.D.; Torok, Z.; Ozunu, A.; Antonioni, G.; Cozzani, V. Natech risk analysis in the context of land use planning. Case study: Petroleum products storage tank farm next to a residential area. Chem. Eng. Trans. 2014, 36, 439–444. doi: 10.3303/CET1436074.

6. Nurul, I.H.; Nor, A.A.W.; Norain, I.; Rozan, B. Sorption equilibrium and kinetics of oil from aqueous solution using banana pseudostem fibers. International Conference on Environment and Industrial Innovation. 2011, 12, 177–181. doi: 10.1016/j.jhazmat.2008.01.098.

7. El–Nafaty, U.A.; Muhammad, I.M.; Abdulsalam, S. Biosorption and kinetics studies on oil removal from produced water using banana peel. Civ. Environ. Res. 2013, 3(7), 125–136.

8. Idris, J.; Eyu, G.D.; Mansor, A.M.; Ahmad, Z.; Chukwuekezie, C.S. A preliminary study of biodegradable waste as sorbent material for oil–spill cleanup. Sci. World J. 2014, 5, 638–687.  doi: 10.1155/2014/638687.

9. Lim, T.; Huang, X. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic–oleophilic fibrous sorbent for oil spill cleanup. Chemosphere. 2007, 66(5), 955–963. doi: 10.1016/j.chemosphere.2006.05.062.

10. Warr, L.N.; Perdrial, J.N.; Lett, M.C.; Heinrich–Salmeron, A.; Khodja, M. Clay mineral–enhanced bioremediation of marine oil pollution. Appl. Clay Sci. 2009, 46(4), 337–345. doi: 10.1016/j.clay.2009.09.012.

11. Gerald, D.; Herve, C.; Marie–Elisabeth, B.; Christophe, B.; Christian, V. Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. study of sorption properties and comparison with other cotton fiber–based sorbents. Environ. Sci. Technol. 2003, 37, 1013–1015. doi: 10.1021/es020061s.

12. Banerjee, S., Joshi, M.V., Jayaram, R.V. Treatment of oil spill by sorption technique using fatty acid grafted sawdust. Chemosphere 2006, 64, 1026–1031. doi: 10.1016/j.chemosphere.2006.01.065.

13. Sun, X.F.; Sun, S.; Sun, J.X. Acetylation of rice straw with or without catalysts and its characterization as a natural sorbent in oil spill cleanup. J. Agric. Food Chem. 2002, 50(22), 6428–6433. doi: 10.1021/jf020392o.

14. Sayed, S.A.; Zayed, A.M. Investigation of the effectiveness of some adsorbent materials in oil spill clean–ups. Desalination 2006, 194(1–3), 90–100. doi: 10.1016/S0011-9164(01)00375-7.

15. Srinivasan, A.; Viraraghavan, T. Removal of oil by walnut shell media. Bioresour. Technol. 2008, 99, 8214–8220. doi: 10.1016/j.biortech.2008.03.072.

16. Hussein, M.; Amer, A.A.; Sawsan, I.I. Oil spill sorption using carbonized pith bagasse. Application of carbonized pith bagasse as loose fiber. Global NEST J. 2009, 11(4), 440–448.

17. Ibrahim, S.; Wang, S.; Ang, H. Removal of emulsified oil from oily wastewater using agricultural waste barley straw. Biochem. Eng. J. 2010, 49, 78–83. doi: 10.1016/j.bej.2009.11.013.

18. Sathasivam, K.; Haris, M.R.H.M. Adsorption kinetics and capacity of fatty acid–modified banana trunk fibers for oil in water. Water Air Soil Pollut. 2010, 213, 413–423. doi: 10.1007/s11270-010-0395-z.

19. Uzoije, A.P.; Onunkwo, A.A.; Egwuonwu, C.C. Crude oil sorption onto groundnut shell activated carbon: kinetic and isotherm studies research. Res. J. Environ. Earth Sci. 2011, 3(5), 555–563. doi: 10.13140/RG.2.2.23418.95680.

20. Vlaev, L.; Petkov, P.; Dimitrov, A.; Genieva, S. Cleanup of water polluted with crude oil or diesel fuel using rice husks ash. J. Taiwan Inst. Chem. Eng. 2011, 42(6), 957–964. doi: 10.1016/j.jtice.2011.04.004.

21. Peng, D.; Lan, Z.; Guo, C.; Yang, C.; Dang, Z. Application of cellulase for the modification of corn stalk: Leading to oil sorption. Bioresour. Technol. 2013, 137, 414–418. doi: 10.1016/j.biortech.2013.03.178.

22. Nwadiogbu, J.O.; Ajiwe, V.I.E.; Okoye, P.A.C. Removal of crude oil from aqueous medium by sorption on hydrophobic corncobs: Equilibrium and kinetic studies. J. Taibah Univ. Sci. 2016, 10, 56–63. doi: 10.1016/j.jtusci.2015.03.014.

23. Tontiwachwuthikul, P.; Zubaidi, I.A.; Rennie, E.; Schubert, S.; Seitz, Cassandra, M.; Selinger, S. Remediation of water from waste lubrication oil spill using potato peels. Proceedings of the 3rd International Conference on Fluid Flow, Heat and Mass Transfer (Ottawa, Canada). 2016, pp. 163. doi: 10.11159/ffhmt16.163.

24. Lv, E.; Xia, W.; Tang, M.; Pu, Y. Preparation of an efficient oil–spill adsorbent based on wheat straw. BioRes. 2017, 12(1), 296–315. doi: 10.15376/biores.12.1.296-315.

25. Olufemi, B.A.; Otolorin, F. Comparative adsorption of crude oil using mango (mangnifera indica) shell and mango shell activated carbon. Environ. Eng. Res. 2017, 1–26. doi: 10.4491/eer.2017.011.

26. Odoh, R.; Yebpella, G.G.; Archibong, C.S. Analysis of crude oil removal from the environment using activated carbon produced from rice husks. Int. Arch. App. Sci. Technol. 2018, 9(2), 27–35. doi: 10.15515/iaast.0976-4828.9.2.2735.

27. Alsulaili, A.D.; Fahim, A.M. Oil removal from produced water by agriculture waste adsorbents. Int. J. Environ. Waste Manage. 2019, 25(1), 12–31. doi: 10.1504/IJEWM.2020.104345.

28. Mahmoud, M.A. Oil spill cleanup by raw flax fiber: Modification effect, sorption isotherm, kinetics and thermodynamics. Arabian J. Chem. 2020, 13(6), 5553–5563. doi: 10.1016/j.arabjc.2020.02.014.

29. Nam, T.V.; Nguyen, T.T.; Dung, D.N.; Phuong, P.T.H. Esterified durian peel adsorbents with stearic acid for spill removal. Chem. Eng. Trans. 2020, 78, 271–276. doi: 10.3303/CET2078046.

30. Ukpong, A. Mathematical and kinetic modelling of the adsorption of crude oil spill using coconut coir activated carbon. J. Energy Environ. Chem. Eng. 2021, 6(1), 1–9. doi: 10.11648/j.jeece.20210601.11.

31. Maleki, H. Recent advances in aerogels for environmental remediation applications: a review. Chem. Eng. J. 2016, 300, 98–118. doi: 10.1016/j.cej.2016.04.098.

32. Kizil, S.; Sonmez, H.B. Oil loving hydrophobic gels made from glycerol propoxylate: Efficient and reusable sorbents for oil spill clean–up. J. Environ. Manag. 2017, 196, 330–339. doi: 10.1016/j.jenvman.2017.02.016.

33. Anuzyte, E.; Vaisis, V. Natural oil sorbents modification methods for hydrophobicity improvement. Energy Procedia 2018, 147, 295–300. doi: 10.1016/j.egypro.2018.07.095.

34. Angelova, D.; Uzunov, I.; Uzunova, S.; Gigova, A.; Minchev, L. Kinetics of oil and oil products adsorption by carbonized rice husks. Chem. Eng. J. 2011, 172, 306–311. doi: 10.1016/j.cej.2011.05.114.

35. Rengasamy, R.S.; Das, D.; Karan, C.P. Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J. Hazard. Mater. 2011, 186, 526–532. doi: 10.1016/j.jhazmat.2010.11.031.

36. Anjos, R.B.; Hilário, L.S.; Juviniano, H.B.M.; Silva, D.R. Crude oil removal using Calotropis procera. BioRes. 2020, 15(3), 5246–5263. doi: 10.15376/biores.15.3.5246-5263.

37. Behnood, R.; Anvaripour, B.; Fard, N.J.H.; Farasati, M. Crude oil layer sorption from saline water surface by raw and acetylated sugarcane bagasse. Sci. Int. (Lahore). 2014, 26(3), 1157–1161.

38. Jarrah, K.; Hisaindee, S.; Al–Sayah, M.H. Preparation of oil sorbents by solvent–free grafting of cellulose cotton fibers. Cellulose 2018, 25, 4093–4106. doi: 10.1007/s10570-018-1846-8.

39. Lease, J.; Kawano, T.; Andou, Y. Esterification of cellulose with long fatty acid chain through mechanochemical method. Polymers 2021, 13, 4397. doi: 10.3390/polym13244397.

40. Peng, D.; Li, H.; JieLia, W.; Zheng, L. Biosorbent with superhydrophobicity and superoleophilicity for spilled oil removal. Ecotoxicol. Environ. Saf. 2021, 209, 111803.  doi: 10.1016/j.ecoenv.2020.111803.

41. Lin, M.; Liu, Y.; Chen, W.; Wang, H., Hu, X. Use of bacteria–immobilized cotton fibers to absorb and degrade crude oil. Int. Biodeterior. Biodegrad. 2014, 88, 8–12. https://doi.org/10.1016/j.ibiod.2013.11.015.

42. Stamm, A.J. Wood and cellulose. Science Ronald Press Co, New York, NY, USA. 1964.

43. Joseph, B.; Sagarika, V.K.; Sabu, C.; Kalarikkal, N.; Thomas, S. Cellulose nanocomposites: Fabrication and biomedical applications. J. Bioresour. Bioprod. 2020, 5, 223–237. doi: 10.1016/j.jobab.2020.10.001.

44. Wu, Q.; Henriksson, M.; Liu, X.; Berglund, L.A. Biomacromolecules 2007, 8, 3687.

45. Aqsha, A.; Tijani, M.M.; Mahinpey, N. Catalytic pyrolysis of straw biomasses (wheat, flax, oat and barley straw) and the comparison of their product yields. WIT Trans. Ecol. Environ. 2014, 190, 1007–1015. doi: 10.2495/EQ140942.

46. Al–Jammal, N.; Juzsakova, T. Review on the effectiveness of adsorbent materials in oil spills clean up. Proceeding of the 7th International Conference of ICEEE (Budapest, Hungary). 2016.

47. Wang, Y.; Zheng, A. Effect of kapok fiber treated with various solvents on oil absorbency. Ind. Crops Prod. 2012, 40, 178–184. doi: 10.1016/j.indcrop.2012.03.002.

48. Gupta, S.; Tai, N.H. Carbon materials as oil sorbents: a review on the synthesis and performance. J. Mater. Chem. 2016, 4, 1550–1565. doi: 10.1039/C5TA08321D.

49. Asadpour, R.; Sapari, N.B.; Tuan, Z.Z.; Jusoh, H.; Riahi, A.; Orji. K.U. Application of sorbent materials in oil spill management: A review. Caspian J. Appl. Sci. Res. 2013, 2(2), 46–58.

50. Huang, X.; Lim, T.T. Performance and mechanism of a hydrophobic–oleophilic kapok filter for oil/water separation. Desalination 2006, 190, 295–307. doi: 10.1016/j.desal.2005.09.009.

51. Minh, Q.C.; Truong, T.T.; Anh, T.H.; Hieu, T.L. Oil spill cleanup by raw cellulose–based absorbents: a green and sus–tainable approach. Energ. Source Part A. 2021, 1–14. doi: 10.1080/15567036.2021.1928798.

52. Tan, J.Y.; Low, S.Y.; Ban, Z.H.; Siwayanan, P. A review on oil spill clean–up using bio–sorbent materials with special emphasis on utilization of kenaf core fibers. BioResources. 2021, 16(4), 8394–8416. doi: 10.15376/biores.16.4.Tan.

53. Bajwa, D.S.; Sitz, E.D.; Bajwa, S.G.; Barnick, A.R. Evaluation of cattail (Typha spp.) for manufacturing composite panel. Ind. Crops. Prod. 2015, 75, 195–199. doi: 10.1016/j.indcrop.2015.06.029.

54. Nordin, N.I.; Ariffin, H.; Andou, Y.; Hassan, M.A.; Shirai, Y.; Nishida, H.; Ibrahim, N.A. Modification of oil palm mesocarp fiber characteristics using superheated steam treatment. Molecules 2013, 18(8), 9132–9146. doi: 10.3390/molecules18089132.

55. Tu, L.; Duan, W.; Xiao, W.; Fu, C.; Wang, A.; Zheng, Y. Calotropis gigantean fiber derived carbon fiber enables fast and efficient absorption of oils and organic solvents. Sep. Purif. Technol. 2018, 192, 30–35. doi: 10.1016/j.seppur.2017.10.005.

56. Wahi, R.; Chuah, L.A.; Choong, T.S.Y.; Ngaini, Z.; Nourouzi, M.M. Oil removal from aqueous state by natural fibrous sorbent: An overview. Sep. Purif. Technol. 2013, 113, 51–63. doi: 10.1016/j.seppur.2013.04.015.

57. Husseien, M.; Amer, A.A.; El–maghraby, A. Experimental investigation of thermal modification influence on sorption qualities of barley straw. J. Appl. Sci. Res. 2008, 4(6), 652–657.

58. Hilário, L.S.; Anjos, R.P.D.; Juviniano, H.B.D.M.; Silva, D.R.D.S. Evaluation of thermally treated calotropis procera fiber for the removal of crude oil on the water surface. Materials. 2019, 12, 3894. doi: 10.3390/ma12233894.

59. Khan, E.; Virojnagud, W.; Ratpukdi, T. Use of biomass sorbents for oil removal from gas station runoff. Chemosphere 2014, 57(7), 681–689. doi: 10.1016/j.chemosphere.2004.06.028.

60. Ali, N.; El–harbawi, M.; Jabal, A.A.; Yin, C. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix. Environ. Technol. 2012, 33(4), 481–486. doi: 10.1080/09593330.2011.579185.

61. Said, A.E.A.S.; Ludwick, A.G.; Aglan, H.A. Usefulness of raw bagasse for oil absorption: a comparison of raw and acylated bagasse and their components. Bioresour. Technol. 2009, 100(7), 2219–2222. doi: 10.1016/j.biortech.2008.09.060.

62. Moriwaki, H.; Kitajima, S.; Kurashima, M.; Hagiwara, A.; Haraguchi, K.; Shirai, K.; Kanekatsu, R.; Kiguchi, K. Utilization of silkworm cocoon waste as a sorbent for the removal of oil from water. J. Hazard Mater. 2009, 165, 266–270. doi: 10.1016/j.jhazmat.2008.09.116.

63. Santos, A.L.; Botelho, E.C.; Kostov, K.G.; Ueda, M.; G. da Silva, L.L. Carbon fiber surface modification by plasma treatment for interface adhesion improvements of aerospace composites. Adv. Mater. Res. 2016, 1135, 75–87. doi: 10.4028/www.scientific.net/AMR.1135.75.

64. Alekseeva, A.A.; Stepanova, S.V. Effect of plasma surface modification of mixed leaf litter on the mechanism of oil film removal from water bodies. Russ. J. Gen. Chem. 2019, 89, 2763–2768. doi: 10.1134/S107036321913005X.

65. Tursi, A.; Vietro, N.D.; Beneduci, A.; Milella, A.; Chidichimo, F.; Fracassi, F.; Chidichimo, G. Low pressure plasma functionalized cellulose fiber for the remediation of petroleum hydrocarbons polluted water. J. Hazard. Mater. 2019, 373(5), 773–782. doi: 10.1016/j.jhazmat.2019.04.022.

66. Mohd Edeerozey, A.M.; Akil, H.M.; Azhar, A.B.; Zainal, A.M.I. Chemical modification of kenaf fibers. Materials Letters. 2007, 61(10), 2023–2025. https://doi.org/10.1016/j.matlet.2006.08.006.

67. Kalia, S.; Thakur, K.; Celli, A.; Kiechel, M.A.; Schauer, C.L. Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. J. Environ. Chem. Eng. 2013, 1, 97–112. doi: 10.1016/j.jece.2013.04.009.

68. Hokkanen, S.; Bhatnagar, A.; Sillanpaa, M. A review on modification methods to cellulose–based adsorbents to improve adsorption capacity. Water Res. 2016, 91, 156–173. doi: 10.1016/j.watres.2016.01.008.

69. Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical treatments on plant–based natural fibre reinforced polymer composites: An overview. Composites 2012, 43, 2883–2892. doi: 10.1016/j.compositesb.2012.04.053.

70. Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274.

71. Kamel, S., El–Sakhawy, M. Using of agriculture residue in removing of oil spill. Trade Science Inc. 2011, 5(2), 64–70.

72. Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber–reinforced composites: a review. J. Polym. Environ. 2007, 15, 25–33. doi: 10.1007/s10924-006-0042-3.

73. Hasim, M.Y.; Roslan, M.N.; Amin, A.M.; Ahmad, Z.A.M.; Ariffin, S. Mercerization treatment parameter effect on natural fiber reinforced polymer matrix composite: A brief review. WASET. 2012, 6(8), 784–790.

74. Ramadevi, P.; Sampathkumar, D.; Srinivasa, C.V.; Bennehalli, B. Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources 2012, 7(3), 3515–3524.

75. Abdullah, M.; Muhamad, S.H.A.; Sanusi, S.N.; Jamaludin, S.I.S.J.; Mohamad, N.F.; Rusli, M.A.H.R. Preliminary study of oil removal using hybrid peel waste: musa balbisiana and citrus sinensis. Appl. Environ. Biol. Sci. 2016, 6(8S), 59–63.

76. Wong, C.; McGowan, T.; Bajwa, S.G.; Bajwa, D.S. Impact of fiber treatment on the oil absorption characteristics of plant fibers. BioResources 2016, 11(3), 6452–6463. doi: 10.15376/biores.11.3.6452–6463.

77. Bazargan, A.; Tan, J.; Hui, C.W.; McKay, G. Utilization of rice husks for the production of oil sorbent materials. Cellulose 2014, 21, 1679–1688. doi: 10.1007/s10570-014-0203-9.

78. Chen, J.; Xu, J.; Wang, K.; Cao, X.; Sun, R. Cellulose acetate fibers prepared from different raw materials with rapid synthesis method. Carbohydr. Polym. 2016, 137, 685–692. doi: 10.1016/j.carbpol.2015.11.034.

79. Nwabueze, H.O.; Chiaha, P.N.; Ezekannagha, B.C.; Okoani, O.E. Acetylation of corn cobs using iodine catalyst, for oil spills remediation. IJES 2016, 5(9), 53–59.

80. Onwuka, J.C.; Agbaji, E.B.; Ajibola, V.O.; Okibe, F.G. Treatment of crude oil contaminated water with chemically modified natural fiber. Appl. Water Sci. 2018, 8(3), 86. doi: 10.1007/s13201-018-0727-5.

81. Asadpour, R.; Sapari, N.B.; Isa, M.H.; Kakooei, S.; Orji, K.U. Acetylation of corn silk and its application for oil sorption. Fibers Polym. 2015, 16(9), 1830–1835. doi: 10.1007/s12221-015-4745-8.

82. Rotar, O.V.; Iskrizhitskaya, D.V.; Iskrizhitsky, A.A.; Oreshina, A.А. Cleanup of water surface from oil spills using natural sorbent materials. Procedia Chem. 2014, 10, 145–150. doi: 10.1016/j.proche.2014.10.025.

83. Thompson, N.E.; Emmanuel, G.C.; Adagadzu, K.J.; Yusuf, N.B. Sorption studies of crude oil on acetylated rice husks. Arch. Appl. Sci. Res. 2010, 2(5),142–151.

84. Sun, X.F.; Sun, R.C.; Sun, J.X. A convenient acetylation of sugarcane bagasse using NBS as a catalyst for the preparation of oil sorption–active materials. J. Mater. Sci. 2003, 38, 3915–3923. doi: 10.1023/A:1026189911651.

85. Heinze, T.; Liebert, T.; Koschella, A. Esterification of polysaccharides. J. Am. Chem. Soc. 2006, 129(7), 2195–2196. doi: 10.1021/ja069801d.

86. Asadu, C.O.; Anthony, E.C.; Elijah, O.C.; Ike, I.S.; Onoghwarite, O.E.; Okwudili, U.E. Development of an adsorbent for the remediation of crude oil polluted water using stearic acid grafted coconut husk (Cocos nucifera) composite. Appl. Surf. Sci. Adv. 2021, 6, 100179. doi: 10.1016/j.apsadv.2021.100179.

87. Andou, Y.; Lee, H.S.; Kim, D.; Nagasawa, N.; Nishida, H.; Shirai, Y. Enhancement of compatibility based on vapor–phase–assisted surface polymerization (VASP) method for polymer composites with agricultural wastes. Compos. Interfaces. 2014, 9, 773–785. doi: 10.1080/15685543.2014.960318.

88. Jebrane, M.; Terziev, N.; Heinmaa, I. Biobased and sustainable alternative route to long–chain cellulose esters. Biomacromolecules 2017, 18, 498–504. doi: 10.1021/acs.biomac.6b01584.

89. Kakuchi, R.; Ito, R.; Nomura, S.; Abroshan, H.; Ninomiya, K.; Ikai, T.; Maeda, K.; Kim, H.J.; Takahashi, K. A mechanistic insight into the organocatalytic properties of imidazolium–based ionic liquids and a positive co–solvent effect on cellulose modification reactions in an ionic liquid. RCS Adv. 2017, 7, 9423–9430. doi: 10.1039/C6RA28659C.

90. Huang, L.; Wu, Q.; Wang, Q.; Wolcott, M. One–step activation and surface fatty acylation of cellulose fibers in a solvent–free condition. ACS Sustainable Chem. Eng. 2019, 7(19), 15920–15927. doi: 10.1021/acssuschemeng.9b01974.

91. Sun, X.F.; Sun, R.C.; Sun, J.X. Acetylation of sugarcane bagasse using NBS as a catalyst under mild reaction conditions for the production of oil sorption–active materials. Bioresour. Technol. 2004, 95(3), 343–350. doi: 10.1016/j.biortech.2004.02.025.

92. Zou, J.; Liu, X.; Chai, W.; Zhang, X.; Li, B.; Wang, Y. Sorption of oil from simulated seawater by fatty acid–modified pomelo peel. Desalin. Water Treat. 2015, 56(4), 939–944. doi: 10.1080/19443994.2014.941302.

93. Cheu, S.C.; Kong, H.; Song, S.T., Saman, N., Johari, K., Mat, H. High removal performance of dissolved oil from aqueous solution by sorption process using fatty acid esterified pineapple leaf as novel sorbents. RSC Adv. 2016, 6, 13710–13722. doi: 10.1039/C5RA22929D.

94. Yusof, N.A.; Mukhair, H.; Malek, E.A.; Mohammad, F. Esterified coconut coir by fatty acid chloride as biosorbent in oil spill removal. BioResources 2015, 10(4), 8025–8038. doi: 10.15376/biores.10.4.8025-8038.

95. Shin, Y.; Han, K.S.; Arey, B.W.; Bonheyo, G.T. Cotton fiber–based sorbents for treating crude oil spills. ACS Omega. 2020, 5, 13894–13901. doi: 10.1021/acsomega.0c01290.

96. Ngaini, Z.; Noh, F.; Wahi, R. Esterified sago waste for engine oil removal in aqueous environment. Environ. Technol. 2014, 35(21–24), 2761–2766. doi: 10.1080/09593330.2014.920051.

97. Onwu, D.O.; Ogbodo, O.N.; Ogbodo, N.C.; Chime, T.O.; Udeh, B.C.; Egbuna, S.O.; Onoh, M.I.; Asadu, C.O. Application of esterified ogbono shell activated biomass as an effective adsorbent in the removal of crude oil layer from polluting water surface. J. Appl. Sci. Environ. Manage. 2019, 23(9), 1739–1746. doi: 10.4314/jasem.v23i9.20.

98. Maxwell, O.I.; Ngozi, A.E.; Onyebuchukwu, M.G. Kinetic, isotherm and thermodynamics studies of the adsorption of crude oil from surface water using esterified rice husk and saw dust American. J. Eng. Res. 2019, 8(5), 324–336.

99. Shin, Y.; Winder, E.M.; Han, K.S.; Lee, H.; Bonheyo, G.T. Enhanced capacities of mixed fatty acid–modified sawdust aggregators for remediation of crude oil spill. ACS Omega. 2019, 4, 412–420. doi: 10.1021/acsomega.8b02293.

100. Huang, X.; Wang, A.; Xu, X.; Liu, H.; Shang, S. Enhancement of hydrophobic properties of cellulose fibers via grafting with polymeric epoxidized soybean oil. ACS Sustainable Chem. Eng. 2016, 5(2), 1619–1627. doi: 10.1021/acssuschemeng.6b02359.

101. Abegunde, S.M.; Idowu, K.S.; Adejuwon, O.M.; Adejolu, T.A. A review on the influence of chemical modification on the performance of adsorbents. Resour. Environ. Sustainability. 2020, 1, 100001. doi: 10.1016/j.resenv.2020.100001.

102. Kamaruzaman, A.M.M.F.M.; Zulkifli, A.A.; Kamis, N.H.M.; Shahar, N.A.M. Oil removal using durian peel wastes: effect of adsorbent condition. Malays. J. Ind. Technol. 2016, 1(1), 56–61.

103. Sidiras, D.; Konstantinou, I. A new oil spill adsorbent from sulfuric acid modified wheat straw. Latest Trends Environ. Manuf. Eng. 2012, 132(6), 132–137.

104. Doshi, B.; Sillanpaa, M.; Kalliola, S. A review of bio–based materials for oil spill treatment. Water Res. 2018, 135, 262–277. doi: 10.1016/j.watres.2018.02.034.

105. Yin, T.; Zhang, X.; Liu, X.; Wang, C. Resource recovery of Eichhornia crassipes as oil superabsorbent. Mar. Pollut. Bull. 2017, 118(1–2), 267–274. doi: 10.1016/j.marpolbul.2017.01.064.

106. Thai, Q.B.; Nguyen, S.T.; Ho, D.K.; Tran, T.D.; Huynh, D.M.; Do, N.H.N.; Duong, H.M. Cellulose–based aerogels from sugarcane bagasse for oil spill–cleaning and heat insulation applications. Carbohydr. Polym. 2020, 228, 115365. doi: 10.1016/j.carbpol.2019.115365.

107. Bi, H.; Yin, Z.; Cao, X.; Xie, X.; Tan, C.; Huang, X.; Zhang, H. Carbon fiber aerogel made from raw cotton: A novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 2013, 25(41), 5916–5921. doi: 10.1002/adma.201302435.

108. Zhao, X.Q.; Wahid, F.; Cui, J.X.; Wang, Y.Y.; Zhong, C. Cellulose–based special wetting materials for oil/water separation: A review. Int. J. Biol. Macromol. 2021, 185, 890–906. doi: 10.1016/j.ijbiomac.2021.06.167.

109. Qiao, A.; Cui, M.; Huang, R.; Ding, G.; Qi, W.; He, Z.; Klemeš, J.J.; Su, R. Advances in nanocellulose–based materials as adsorbents of heavy metals and dyes. Carbohydr. Polym. 2021, 272, 118471. doi: 10.1016/j.carbpol.2021.118471.

110. Thomas, B.; Raj, M.C.; Joy, J.; Moores, A.; Drisko, G.L.; Sanchez, C.  Nanocellulose, a versatile green platform: From biosources to materials and their applications. Chem. Rev. 2018, 118, 11575–11625. doi: 10.1021/acs.chemrev.7b00627.

111. Chen, Y.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.; Duan, G.; Jiang, S.; Zhang, K. Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications. Adv. Mater. 2021, 33, 2005569. doi: 10.1002/adma.202005569.

112. Jonoobi, M.; Mekonnen, T.H. Adsorption of oil by 3–(triethoxysilyl) propyl isocyanate–modified cellulose nanocrystals. Processes. 2022, 10(10), 2154. doi: 10.3390/pr10102154.

113. Bidgolia, H.; Mortazavia, Y.; Khodadadi, A.A. A functionalized nano–structured cellulosic sorbent aerogel for oil spill cleanup: synthesis and characterization. J. Hazard. Mater. 2019, 366, 229–239. doi: 10.1016/j.jhazmat.2018.11.084.

114. Laitinen, O.; Suopajärvi, T.; Österberg, M.; Liimatainen, H. Hydrophobic, superabsorbing aerogels from choline chloride–based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl. Mater. Interfaces. 2017, 9(29), 25029–25037. doi: 10.1021/acsami.7b06304.

115. Fatemeh, R., Maleksadat, H., Mehdi, J., Qingliang, Y. Development of hydrophobic nanocellulose–based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose. 2018, 25(8), 4695–4710. doi: 10.1007/s10570-018-1867-3.

116. Wang, J.; Liu, S. Remodeling of raw cotton fiber into flexible, squeezing–resistant macroporous cellulose aerogel with high oil retention capability for oil/water separation. Sep. Purif. Technol. 2019, 211, 303–310. doi: 10.1016/j.seppur.2019.03.097.

117. Zhang, X.; Kwek, L.P.; Duyen, K.L.; Tan, M.S.; Duong, H.M. Fabrication and properties of hybrid coffee–cellulose aerogels from spent coffee grounds. Polymers 2019, 11, 1942. doi: 10.3390/polym11121942.

118. Loh, J.W.; Goh, X.Y.; Phuc, T.T.N.; Quoc, B.T.; Ong, Z.Y.; Hai, M.D. Advanced aerogels from wool waste fibers for oil spill cleaning applications. J. Polym. Environ. 2021, 30, 681–694. doi: 10.1007/s10924-021-02234-y.

119. Zhang, H.; Wang, J.; Xu, G.; Xu, Y.; Wang, F.; Shen, H. Ultralight, hydrophobic, sustainable, cost–effective and floating kapok/microfibrillated cellulose aerogels as speedy and recyclable oil superabsorbents. J. Hazard. Mater. 2021, 406, 124758. doi: 10.1016/j.jhazmat.2020.124758.

120. Zhang, H.; Zhang, G.; Zhu, H.; Wang, F.; Xu, G.; Shen, H.; Wang, J. Multiscale kapok/cellulose aerogels for oil absorption: The study on structure and oil absorption properties. Ind. Crops Prod. 2021, 171, 113902. doi: 10.1016/j.indcrop.2021.113902.

121. Dilamian, M.; Noroozi, B. Rice straw agri–waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel. Carbohydr. Polym. 2021, 251, 117016. doi: 10.1016/j.carbpol.2020.117016.

122. Ibrahim, S.; Ang, H.M.; Wang, S. Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Bioresour. Technol. 2009, 100, 5744–5749. doi: 10.1016/j.biortech.2009.06.070.

123. Fanta, G.F.; Abbott, T.P.; Burr, R.C.; Doane, W.M. Ion exchange reactions of quaternary ammonium halides with wheat straw. Preparation of oilabsorbents. Carbohydr. Polym. 1987, 7, 97–109. doi: 10.1016/0144-8617(87)90052-X.

124. Namasivayam, C.; Sureshkumar, M.V. Removal of chromium (VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour. Technol. 2008, 99, 2218–2225. doi: 10.1016/j.biortech.2007.05.023.

125. Tan, G.; Xiao, D. Adsorption of cadmium ion from aqueous solution by ground wheat stems. J. Hazard. Mater. 2009, 164, 1359–1363. doi: 10.1016/j.jhazmat.2008.09.082.

126. Wang, Y.; Tian, Y.; Han, B.; Zhao, H.; Bi, J.; Cai, B. Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J. Environ. Sci. 2007, 19, 222–225. doi: 10.1016/s1001-0742(07)60036-9.

127. Mollaei, M.; Abdollahpoura, S.; Atashgahi, S.; Abbasi, H.; Masoomi, F.; Rad, I.; Lotfi, A.S.; Zahiri, H.S.; Vali, H.; Noghabi, K.A. Enhanced phenol degradation by Pseudomonas sp. SA01: gaining insight into the novel single and hybrid immobilizations. J. Hazard. Mater. 2010, 175, 284–292. doi: 10.1016/j.jhazmat.2009.10.002.

128. Oh, Y.S.; Maeng, J.; Kim, S.J. Use of microorganisme–immobilized polyurethane foams to absorb and degrade oil on water surface. Appl. Microbiol. Biotechnol. 2000, 54, 418–423. doi: 10.1007/s002530000384.

129. Lee, Y.C.; Shin, H.J.; Ahn, Y.; Shin, M.C.; Leed, M.; Yang, J.W. Biodegradation of diesel by mixed bacteria immobilized onto a hybrid support of peat moss and additives: a batch experiment. J. Hazard. Mater. 2010, 183, 940–944. doi: 10.1016/j.jhazmat.2010.07.028.

130. Wang, Z.Y.; Xu, Y.; Wang, H.Y.; Zhao, J.; Gao, D.M.; Li, F.M.; Xing, B. Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms. Pedosphere 2012, 22, 717–725. doi: 10.1016/S1002-0160(12)60057-5.

131. Rahman, R.N.Z.A.; Ghazali, F.M.; Salleh, A.B.; Basri, M. Biodegradation of hydrocarbon contamination by immobilized bacterial cells. J. Microbiol. 2006, 44, 354–359.

132. Díaz, M.P.; Boyd, K.G.; Grigson, S.J.; Burgess, J.G. Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD–M, immobilized onto polypropylene fibers. Biotechnol Bioeng. 2002, 79(2), 145–153. doi: 10.1002/bit.10318.

133. Hussein, M.; Amer, A.A.; Zahran, H.F.; Ali, S.M.; Elgohary, M.; Nasr, M. Agricultural waste as a biosorbent for oil spills. Int. J. Dev. 2013, 2(1), 127–135.

134. Atlas, R.M. Petroleum biodegradation and oil spill bioremediation. Mar. Pollut. Bull. 1995, 31(4–12), 178–182. doi: 10.1016/0025-326X(95)00113-2.

135. Atlas, R.M.; Bartha R. Hydrocarbon biodegradation and oil spill bioremediation. Adv Microb Ecol. 1992, 287–338. doi: 10.1007/978-1-4684-7609-5_6.