1 Faculty of Marine Resource Management, Ho Chi Minh City University of Natural Resources and Environment, Vietnam;;;

2 Institute of Coastal and Offshore Engineering, Vietnam, 658 Vo Van Kiet, Ward 1, District 5, Ho Chi Minh City, Vietnam;

3 Ho Chi Minh City Union of Science and Technology Associations, 224 Dien Bien Phu, Ward 7, District 3, Ho Chi Minh City Vietnam;

4 Department of Fluid Mechanics, Ho Chi Minh City University of Technology, Vietnam, 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam;

5 Vietnam National University Ho Chi Minh City, Vietnam, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam;

*Corresponding author:; Tel.: +84–902698585


The coastal current plays a vital role in the transportation of sediment near the shoreline, significantly impacting the distribution of sediment grain sizes and shoreline transformations. This study focuses on examining the near-shore coastal current along the Soc Trang Province coast in Vietnam, considering the combined influences of waves, winds, and tides by utilizing a model in curvilinear coordinate system. Rigorous calibration and validation of the model are conducted using data obtained from measurement stations, revealing a consistent correlation between the observed data and simulated results. The direction of the coastal current, governed by the interplay of waves and winds, exhibits variation according to the monsoon season. During the northeast monsoon, the flow velocity is notably influenced, surpassing the impact of the southwest monsoon. In the northeast monsoon season, the tidal currents from the northeast to southwest align with the wave-induced current, resulting in an amplified coastal current during both spring tide (3-5%) and neap tide (2-5%). Conversely, in the southwest monsoon season, the tidal currents and wave-induced current move in opposing directions, leading to a reduction in coastal current velocities during high tide (3-4%) and low tide (3-4.5%). On the other hand, the impact of wind-induced current is negligible due to the small and low-lying nature of these areas, thereby minimizing the influence of wind on the overall flow dynamics.


Cite this paper

Kim, T.T.; Huy, D.N.; Huy, N.D.Q.; Phuoc, N.V.; Phung, N.K.; Bay, N.T. The barotropic simulation of coastal current in Soc Trang derived from a hydraulic model in curvilinear coordinates. J. Hydro-Meteorol. 2023, 16, 38-55. 


1. Tran, D.A.; Hoang, L.P.; Bui, M.D.; Rutschmann, P. Simulating future flows and salinity intrusion using combined one-and two-dimensional hydrodynamic modelling the case of Hau River, Vietnamese Mekong delta. Water 2018, 10(7), 897

2. Stansby, P.K. Coastal hydrodynamics-present and future. J. Hydraul. Res. 2013, 51(4), 341–350.

3. Chang, S.W. et al. Does sea-level rise have an impact on saltwater intrusion? Adv. Water. Resour. 2011, 34(10), 1283–1291.

4. Galland, J.; Goutal, C.N.; Hervouet, J.M. TELEMAC: A new numerical model for solving shallow water equations. Adv. Water. Resour. 1991, 14(3), 138–148.

5. Hervouet, J.M. TELEMAC modelling system: an overview. Hydrol. Processes 2000, 14(13), 2209–2210.

6. Zangiabadi, E. et al. Computational fluid dynamics and visualisation of coastal flows in tidal channels supporting ocean energy development. Energies 2015, 8(6), 5997–6012.

7. de Saint-Venant, B.A.J.C. Théorie du Mouvement Non Permanent des Eaux, avec Application aux Crues de Rivières et à l'Introduction des Marées dans leur Lit. Comptes Rendus des séances de l'Académie des Sciences, 1871, pp. 147–154.

8. Castro-Orgaz, O.; Hager, W.H. Shallow water hydraulics. Springer, 2019.

9. Ersoy, M.; Lakkis, O.; Townsend, P. A Saint-Venant model for overland flows with precipitation and recharge. Math. Comput. Appl. 2020, 26(1), 1.

10. Jia, Y.; Wang, S.S. Numerical model for channel flow and morphological change studies. J. Hydraul. Eng. 1999, 125(9), 924–933.

11. Jia, Y.; Wang, S.S. CCHE2D: Two-dimensional hydrodynamic and sediment transport model for unsteady open channel flows over loose bed. National Center for Computational Hydroscience Engineering, Technical Report No. NCCHE-TR-1, 2001.

12. Thakur, B. et al. Exploring CCHE2D and its sediment modelling capabilities. in World Environmental and Water Resources Congress 2018: Hydraulics and Waterways, Water Distribution Systems Analysis, and Smart Water. American Society of Civil Engineers Reston, VA, 2018.

13. Kadam, P.; Sen, D. Flood inundation simulation in Ajoy River using MIKE–FLOOD. ISH J. Hydraul. Eng. 2012, 18(2), 129–141.

14. Nigussie, T.A.; Altunkaynak, A. Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM model. Nat. Hazard. 2019, 99(2), 1031–1047.

15. Sarker, S. Essence of MIKE 21C (FDM Numerical Scheme): Application on the River Morphology of Bangladesh. Open J. Modell. Simul. 2022, 10(2), 88–117.

16. Bomers, A.; Schielen, R.M.J.; Hulscher, S.J. The influence of grid shape and grid size on hydraulic river modelling performance. Environ. Fluid. Mech. 2019, 19(5), 1273–1294.

17. Baker, T.J. Discretization of the Navier Stokes equations and mesh induced errors. Mississippi State Univ. Mississippi State, MS (United States): United State, 1996.

18. Liu, X.; Ma, J.; Xu, S.; Wang, B. On the generation of coastline-following grids for ocean models–trade-off between orthogonality and alignment to coastlines. Ocean. Dyn. 2017, 67, 1095–1104.

19. Morianou, G.G.; Kourgialas, N.N.; Karatzas, G.P.; Nikolaidis, N.P. Assessing hydro-morphological changes in Mediterranean stream using curvilinear grid modeling approach-climate change impacts. Earth. Sci. Inf. 2018, 11(2), 205–216.

20. Yousefi, K.; Veron, F. Boundary layer formulations in orthogonal curvilinear coordinates for flow over wind–generated surface waves. J. Fluid Mech. 2020, 888, A11.

21. Truong, Q.C.; Nguyen, T.H.; Tatsumi, K.; Pham, V.T.; Tri, V.P.D. A Land-Use Change Model to Support Land-Use Planning in the Mekong Delta (MEKOLUC). Land 2022, 11(2), 297.

22. Tran, D.A.; Tsujimura, M.; Vo, L.P.; Nguyen, V.T.; Kambuku, D.; Dang, T.D. Hydrogeochemical characteristics of a multi-layered coastal aquifer system in the Mekong Delta, Vietnam. Environ. Geoche. Health 2020, 42(2), 661–680.

23. Xing, F.; Meselhe, E.A.; Allison, M.A.; Weathers III, H.D. Analysis and numerical modeling of the flow and sand dynamics in the lower Song Hau channel, Mekong Delta. Cont. Shelf Res. 2017, 147, 62–77.

24. Tamura, T.; Horaguchi, K.; Saito, Y.; Nguyen, V.L.; Tateishi, M.; Ta, T.K.O.; Nanayama, F.; Watanabe, K. Monsoon–influenced variations in morphology and sediment of a mesotidal beach on the Mekong River delta coast. Geomorphology 2010, 116(1–2), 11–23.

25. Thanh, V.Q. et al. Sediment transport and morphodynamical modeling on the estuaries and coastal zone of the Vietnamese Mekong Delta. Cont. Shelf. Res. 2019, 186, 64–76.

26. Bayrak, M.M.; Marks, D.; Hauser, L.T. Disentangling the concepts of global climate change, adaptation, and human mobility: A political-ecological exploration in Vietnam’s Mekong Delta. Clim. Dev. 2022, 14(10), 1–10.

27. Marchesiello, P.; Nguyen, N.M.; Gratiot, N.; Loisel, H.; Anthony, E.J.; Dinh, C.S.; Nguyen, T.; Almar, R.; Kestenare, E. Erosion of the coastal Mekong delta: Assessing natural against man induced processes. Cont. Shelf. Res. 2019, 181, 72–89.

28. Thanh, V.Q.; Reyns, J.; Wackerman, C.; Eidam, E.F.; Roelvink, D. Modelling suspended sediment dynamics on the subaqueous delta of the Mekong River. Cont. Shelf. Res. 2017, 147, 213–230.

29. Nguyen, N.M.; San, D.C.; Nguyen, K.D.; Pham, Q.B.; Gagnon, A.S.; Mai, S.T.; Anh, D.T. Region of freshwater influence (ROFI) and its impact on sediment transport in the lower Mekong Delta coastal zone of Vietnam. Environ. Monit. Assess. 2022, 194(7), 1–15.

30. Mai, N.P.; Thang, T.D.; Kantoush, S.; Sumi, T.; Binh, D.V.; Trung, L.V. The processes of saltwater intrusion into Hau River. Proceeding of the International Conference on Asian and Pacific Coasts. APAC 2019, pp. 1477–1483.

31. Kim, T.T.; Long, N.K.T.; Hong, N.T.T.; Phung, N.K.; Bay, N.T. Mapping the residual tidal ellipse from Vung Tau–Bac Lieu, Viet Nam by using a numerical model in curvilinear coordinate. VN J. Hydrometeorol. 2021, 8, 50–63.

32. Kim, T.T.; Nguyen, T.T.P.; Hoang, H.K.; Nguyen, T.T.H.; Nguyen, T.N.M.; Phung, D.T.M. Mapping erosion-accretion risk maps in the coastal area of Soc Trang. VN Sci. Tech. Dev. J. 2021, 5(SI2), SI64–SI74.

33. Kim, T.T.; Bay, N.T.; Ky, P.N.; Nguyen, M.T.T.; Tra, N.N.Q. Bottom morphology in hau estuaries under influences of sediment reduction and climate variation. VN Sci. Tech. Dev. J. 2021, 4(SI1), SI84–SI94.

34. Thuy, N.T.D. et al. Modelling Accresion and Erosion Processes in the Bassac and Mekong Rivers of the Vietnamese Mekong Delta. Proceeding of the APAC 2019: Proceedings of the 10th International Conference on Asian and Pacific Coasts. Springer, Hanoi, Vietnam, APAC 2019, pp. 1431–1437.

35. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10(3), 282–290.

36. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE. 2007, 50(3), 885–900.

37. Steiger, J.H. Statistically based tests for the number of common factors. in the annual meeting of the Psychometric Society. Iowa City, IA. 1980.

38. Browne, M.W.; Cudeck, R. Alternative ways of assessing model fit In KA Bollen & JS Long (Eds.), Testing structural equation models. Newbury Park, CA: Sage, 1993, 136–162.

39. Chen, C.; Lai, Z.; Beardsley, R.C.; Xu, Q.; Lin, H.; Viet, N.T. Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea. J. Geophys. Res: Oceans 2012, 117(C3), C03033.

40. Shi-Feng, S. Waves in South China Sea, in Oceanology of China Seas. Oceanology China Seas 1994, 135–140.

41. Mirzaei, A.; Tangang, F.; Juneng, L.; Mustapha, M.A.; Husain, M.L.; Akhir, M.F. Wave climate simulation for southern region of the South China Sea. Ocean Dyn. 2013, 63(8), 961–977.

42. Gugliotta, M.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Nakashima, R.N.; Tamura, T.; Uehara, K.; Katsuki, K.; Yamamoto, S. Process regime, salinity, morphological, and sedimentary trends along the fluvial to marine transition zone of the mixed-energy Mekong River delta, Vietnam. Cont. Shelf Res. 2017, 147, 7–26.