1 HUTECH Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu Street, Ward 25, Binh Thanh District, Ho Chi Minh City 700000, Vietnam;;;;

2 Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City 700000, Vietnam;;;

*Corresponding author:; Tel: +84-945007990


The study aims to assess the diesel oil adsorption capacity of activated carbon derived from rambutan peel, a prevalent agricultural by-product in Vietnam. The adsorption process will be investigated using various adsorption isotherms (Langmuir, Freundlich, Temkin, Dubin-Radushkevich), adsorption kinetics (pseudo-first order and pseudo-second order). The characterization analysis of RPAC revealed the following values: BET surface area of 786.0143 m2/g, BJH adsorption cumulative volume of pores at 0.05392 cm3/g, and BJH adsorption average pore diameter of 55.2432 nm. Individual assessments of factors influencing oil removal efficiency and adsorption capacity identified the optimal initial oil concentration at 1% volume/volume, an optimum contact time of 60 minutes, and an equilibrium adsorption time of 80 minutes. The optimal adsorbent dosage was 250 mg, and the ideal pH was 6. The adsorption process adhered to the Langmuir isotherm with an R² value of 0.9993, yielding a maximum adsorption capacity of 5,712.0 mg/g. The pseudo-second-order model provided a better fit for RPAC’s oil adsorption process with an R² value of 0.9969.


Cite this paper

Nguyen, T.T.; Loc, N.D.; Ba, L.H.; Nam, T.V. Efficient oil removal from water using carbonized rambutan peel: Isotherm and kinetic studies. J. Hydro-Meteorol. 2023, 17, 1-18. 


1. ITOPF. Tanker Spill Statistics 2021; ITOPF Ltd, London, UK., 2022, 1–20.

2. Kolokoussis, P.; Karathanassi, V. Oil spill detection and mapping using Sentinel 2 imagery. J. Mar. Sci. Eng. 2018, 6(1), 1–12.

3. Wardley-Smith, J. The control of oil pollution. Graham & Tortman Ltd, 1976.

4. Alaa El-Din, G.; Amer, A.A.; Malsh, G.; Hussein, M. Study on the use of banana peels for oil spill removal. Alexandria Eng. J. 2018, 57(3), 2061–2068.

5. El-Nafaty, U.A.; Muhammad, I.M.; Abdulsalam, S. Biosorption and kinetic studies on oil removal from produced water using banana peel. J. Civ. Eng. Res. 2013, 3(6), 125–136.

6. Idris, J.; Eyu, G.D.; Mansor, A.M.; Ahmad, Z.; Chukwuekezie, C.S. A preliminary study of biodegradable waste as sorbent material for oil-spill cleanup. Sci. World J. 2014, 2014, 1–5.

7. Lim, T.T.; Huang, X. Evaluation of Kapok (Ceiba Pentandra (L.) Gaertn.) as a natural hollow hydrophobic–oleophilic fibrous sorbent for oil spill cleanup. Chemosphere 2007, 66(5), 955–963.

8. Banerjee, S.S.; Joshi, M.V.; Jayaram, R.V. Treatment of oil spill by sorption technique using fatty acid grafted sawdust. Chemosphere 2006, 64(6), 1026–1031.

9. Kadirvelu, K.; Namasivayam, C. Activated carbon from coconut coirpith as metal adsorbent: Adsorption of Cd(II) from aqueous solution. Adv. Environ. Res. 2003, 7(2), 471–478.

10. Maulion, R.V.; Abacan, S.A.; Allorde, G.G.; Umali, M.C.S. Oil spill adsorption capacity of activated carbon tablets from corncobs in simulated oil-water mixture. Asia Pac. J. Multidiscip. Res. 2015, 3(5), 146–151.

11. Aljeboree, A.M.; Alshirifi, A.N.; Alkaim, A.F. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab. J. Chem. 2017, 10, S3381–S3393.

12. Anwana Abel, U.; Rhoda Habor, G.; Innocent Oseribho, O. Adsorption studies of oil spill clean-up using coconut coir activated carbon (CCAC). ASEAN J. Chem. Eng. 2020, 8(2), 36–47.

13. Atemkeng, C.D.; Anagho, G.S.; Tagne, R.F.T.; Amola, L.A.; Bopda, A.; Kamgaing, T. Optimization of 4-nonylphenol adsorption on activated carbons derived from safou seeds using response surface methodology. Carbon Trends 2021, 4, 100052.

14. Igwegbe, C.A.; Umembamalu, C.J.; Osuagwu, E.U.; Oba, S.N.; Emembolu, L.N. Studies on adsorption characteristics of corn cobs activated carbon for the removal of oil and grease from oil refinery desalter effluent in a downflow fixed bed adsorption equipment. Eur. J. Sustain. Dev. 2020, 5(1), 1–14.

15. Sahu, J.N.; Agarwal, S.; Meikap, B.C.; Biswas, M.N. Performance of a modified multi-stage bubble column reactor for lead(ii) and biological oxygen demand removal from wastewater using activated rice husk. J. Hazard. Mater. 2009, 161(1), 317–324.

16. Angelova, D.; Uzunov, I.; Uzunova, S.; Gigova, A.; Minchev, L. Kinetics of oil and oil products adsorption by carbonized rice husks. Chem. Eng. J. 2011, 172(1), 306–311.

17. Husseien, M.; Amer, A.; El- Maghraby, A.; Taha, N. Experimental investigation of thermal modification influence on sorption qualities of barley straw. J. Appl. Sci. Res. 2008, 4(6), 652–657.

18. Huong, D. Agricultural by-products: Resources are being wasted. Government Electronic Newspaper, 2021. (in Vietnam)

19. Department of Horticulture. Handbook of farming techniques according to VietGAP for 10 major fruit trees. Ministry of Agriculture and Rural Development of Vietnam, 2022.

20. Oliveira, E.; Santos, J.; Goncalves, A.P.; Mattedi, S.; Jose, N. Characterization of the rambutan peel fiber (nephelium lappaceum) as a lignocellulosic material for technological applications. Chem. Eng. Trans. 2016, 50, 391–396.

21. Olga, V.R.; Darina, V.I.; Alexandr, A.I.; Alexandra, А.O. Cleanup of water surface from oil spills using natural sorbent materials. Procedia Chemistry 2014, 10, 145–150.

22. Al-Jammal, N.; Juzsakova, T. Review on the effectiveness of adsorbent materials in oil spills clean up. Proceedings of the 7th International Conference of ICEEE, Budapest, Hungary 2016, 131–138.

23. Normah, N. et al. Hydrothermal carbonization of rambutan peel (Nephelium lappaceum L.) as a Green and low-cost adsorbent for Fe(II) removal from aqueous solutions. Chem. Ecol. 2022, 38, 1–17.

24. Ahmad, M.A.; Alrozi, R. Optimization of rambutan peel based activated carbon preparation conditions for remazol brilliant blue R removal. Chem. Eng. J. 2011, 168(1), 280–285.

25. Omer, A.M.; Khalifa, R.E.; Tamer, T.M.; Ali, A.A.; Ammar, Y.A.; Mohy Eldin, M. S. Kinetic and thermodynamic studies for the sorptive removal of crude oil spills using a low-cost chitosan-poly (butyl acrylate) grafted copolymer. Desalin. Water Treat. 2020, 192, 213–225.

26. Kowanga, K.D.; Gatebe, E.; Mauti, G.O.; Mauti, E.M. Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of cu(ii) and pb(ii) using defatted moringa oleifera seed powder. J. Psychopharmacol. 2016, 5(2), 71–78.

27. Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34(5), 451–465.

28. Nnamdi Ekwueme, B.; Anthony Ezema, C.; Asadu, C.O.; Elijah Onu, C.; Onah, T. O.; Sunday Ike, I.; Chinonyelum Orga, A. Isotherm modelling and optimization of oil layer removal from surface water by organic acid activated plantain peels fiber. Arab. J. Chem. 2023, 16(2), 104443.

29. Ike, I.S.; Asadu, C.O.; Ezema, C.A.; Onah, T.O.; Ogbodo, N.O.; Godwin-Nwakwasi, E.U.; Onu, C.E. ANN-GA, ANFIS-GA and thermodynamics base modeling of crude oil removal from surface water using organic acid grafted banana pseudo stem fiber. Appl. Surf. Sci. 2022, 9, 100259.

30. Onu, C.E.; Nwabanne, J.T.; Ohale, P.E.; Asadu, C.O. Comparative analysis of RSM, ANN and ANFIS and the mechanistic modeling in eriochrome black-t dye adsorption using modified clay. S. Afr. J. Chem. Eng. 2021, 36, 24–42.

31. Hasanah, M.; Juleanti, N.; Priambodo, A.; Arsyad, F.; Lesbani, A.; Mohadi, R. Utilization of rambutan peel as s potential adsorbent for the adsorption of malachite green, procion red, and congo red dyes. Ecol. Eng. Environ. Technol. 2022, 23, 148–157.

32. Njoku, V.O.; Foo, K.Y.; Asif, M.; Hameed, B.H. Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. Chem. Eng. J. 2014, 250, 198–204.

33. Aziz, A.; Mohamad Yusop M.F.; Ahmad, M.A. Removal of bisphenol S from aqueous solution using activated carbon derived from rambutan peel via microwave irradiation technique. Sains Malays. 2022, 51(12), 3967–3980.

34. Tran, Q.T. et al. Experimental design, equilibrium modeling and kinetic studies on the adsorption of methylene blue by adsorbent: activated carbon from durian shell waste. Materials (Basel) 2022, 15(23), 8566

35. Patmawati, Y.; Alwathan; Ramadani, N.H. Characterization of activated carbon prepare from low-rank coal of east kalimantan by using acid and base activation. Proceedings of the 8th Annual Southeast Asian International Seminar (ASAIS 2019)  2019, 178–181.

36. Sokker, H.H.; El-Sawy, N.M.; Hassan, M.A.; El-Anadouli, B.E. Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J. Hazard. Mater. 2011, 190(1), 359–365.

37. Cheu, S.C.; Kong, H.; Song, S.T.; Saman, N.; Johari, K.; Mat, H. High removal performance of dissolved oil from aqueous solution by sorption using fatty acid esterified pineapple leaves as novel sorbents. RSC Adv. 2016, 6(17), 13710–13722.

38. Peng, D.; Lan, Z.; Guo, C.; Yang, C.; Dang, Z. Application of cellulase for the modification of corn stalk: leading to oil sorption. Bioresour. Technol. 2013, 137, 414–418.

39. Hussein, M.; Amer, A.A.; Sawsan, I.I. Oil spill sorption using carbonized pith bagasse: 1. preparation and characterization of carbonized pith bagasse. J. Anal. Appl. Pyrolysis. 2008, 82(2), 205–211.

40. Tembhurkar, A.; Deshpande, R. Powdered activated lemon peels as adsorbent for removal of cutting oil from wastewater. J. Hazard. Toxic Radioact. Waste 2012, 16(4), 311–315.

41. NwabuezeH, H.O.; Chiaha, P.N.; Ezekannagha, B.C.; Okoani, O.E. Acetylation of corn cobs using iodine catalyst, for oil spills remediation. Int. J. Eng. Sci. 2016, 5(9), 53–59.

42. Wan Ngah, W.S.; Hanafiah, M.A.K.M. Adsorption of copper on rubber (hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies. Biochem. Eng. J. 2008, 39(3), 521–530.

43. Olufemi, B.A.; Otolorin, F. Comparative adsorption of crude oil using mango (mangnifera indica) shell and mango shell activated carbon. Environ. Eng. Res. 2017, 22(4), 384–392.

44. Vlaev, L.; Petkov, P.; Dimitrov, A.; Genieva, S. Cleanup of water polluted with crude oil or diesel fuel using rice husks ash. J. Taiwan Inst. Chem. Eng. 2011, 42(6), 957–964.

45. Angelova, D.; Uzunova, S.; Uzunov, I.; Anchev, B. Dependence between oil sorption capacity of pyrolyzed rice husks and the composition and amount of fluids dispersed on their surface. J. Chem. Technol. Metall. 2012, 47(2), 147–154.