Authors

Affiliations

1 Faculty of Environment and Natural Resources, University of Technology, Vietnam National University, Ho Chi Minh City; nguyenduyen91@hcmut.edu.vn; vy.duonghthuyvy@hcmut.edu.vn; longbt62@hcmut.edu.vn

*Correspondence: longbt62@hcmut.edu.vn; Tel.: +84–918017376

Abstracts

Natural processes and human-caused activities, including coastal erosion, constantly threaten coastal areas. This phenomenon is dangerous because the permanent loss of land leads to the transformation of the coast. In recent years, coastal erosion has become increasingly complicated in the Mekong Delta, especially in the western coastal area of Cape Ca Mau. This study aims to provide updated results of the changing trend of accretion/erosion of the coastline from Cape Ca Mau to Kien Giang in 2021-2023. Specifically, the rate and area of erosion/accretion considered. Remote sensing and GIS tools are used. As a result, in Ngoc Hien district, Ca Mau, the erosion rate is 55.66 m/year, and the erosion area is 47.21 hectares, ranking highest compared to other districts in the same study area. The results also show that the Kien Giang coastal area has a more moderate erosion process than the accretion process. In contrast, on the coast of the Ca Mau Cape area, the erosion and accretion process are complexly interwoven, especially in the Dat Alluvial Plains area Cape - Ngoc Hien (Ca Mau).

Keywords

Cite this paper

Duyen, N.M.C.; Vy, D.T.H.; Long, B.T. The trend of erosion and accretion of the western coast of the Mekong Delta, the section from Ca Mau Cape to Kien Giang. J. Hydro-Meteorol. 2024, 18, 66-78.

References

1. Uścinowicz, G.; Uścinowicz, S.; Szarafin, T.; Maszloch, E.; Wirkus, K. Rapid coastal erosion, its dynamics and cause – An erosional hot spot on the southern Baltic Sea coast. Oceanologia 2023.  doi: 10.1016/j.oceano.2023.12.002.

2. Agate, J.; Ballinger, R.; Ward, R.D. Estuarine, coastal and shelf science satellite remote sensing can provide semi-automated monitoring to aid coastal decision-making. Estuar. Coast. Shelf Sci. 2024, 298(8), 108639. doi: 10.1016/j.ecss.2024.108639.

3. Senevirathna, E.M.T.K.; Edirisooriya, K.V.D.; Uluwaduge, S.P.; Wijerathna, K.B.C.A. Analysis of causes and effects of coastal erosion and environmental degradation in southern coastal belt of Sri Lanka special reference to unawatuna coastal area. Procedia Eng. 2018, 212, 1010–1017. doi: 10.1016/j.proeng.2018.01.130.

4. Sowmya, K.; Sri, M.D.; Bhaskar, A.S.; Jayappa, K.S. Long-term coastal erosion assessment along the coast of Karnataka, west coast of India. Int. J. Sediment Res. 2019, 34(4), 335–344. doi: 10.1016/j.ijsrc.2018.12.007.

5. Neelamani, S. Coastal erosion and accretion in Kuwait - Problems and management strategies. Ocean Coast. Manag. 2018, 156, 76–91. doi: 10.1016/j.ocecoaman.2017.05.014.

6. George, L.; Androws, X.; Krishnan, A.; Kumar, A.; Kannan, R.; Muthusankar, G.; Balasubramani, K. Assessment of shoreline changes and associated erosion and accretion pattern in coastal watersheds of Tamil Nadu, India. Nat. Hazards Res. 2023. doi: 10.1016/j.nhres.2023.09.008.

7. Schmitt, K.; Albers, T. Area coastal protection and the use of bamboo breakwaters in the Mekong Delta. Coastal Disasters Clim. Change VN Eng. Plann. Perspect. 2014, 107–132.

8. Nhan, N.H. Synthesis report of the formation and development mechanism of coastal accretion areas and scientific and technological solutions for sustainable socio-economic development in Ca Mau coastal area-Code:ĐTĐL.2011.T/43. (In Vietnamse). Ho Chi Minh City, 2015.

9. Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Lap, N.V. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 4–9. doi: 10.1038/srep14745.

10. Brunier, G.; Anthony, E.J.; Goichot, M.; Provansal, M.; Dussouillez, P. Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: The marked impact of river-bed mining and implications for delta destabilisation. Geomorphology 2014, 224, 177–191. doi: 10.1016/j.geomorph.2014.07.009.

11. Manh, N.V.; Dung, N.V.; Hung, N.N.; Kummu, M.; Merz, B.; Apel, H. Future sediment dynamics in the Mekong Delta floodplains: Impacts of hydropower development, climate change and sea level rise. Glob. Planet. Change. 2015, 127, 22–33. doi: 10.1016/j.gloplacha.2015.01.001.

12. Gugliotta, M.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Nakashima, R.; Tamura, T.; Uehara, K.; Katsuki, K.; Yamamoto, S. Process regime, salinity, morphological, and sedimentary trends along the fluvial to marine transition zone of the mixed-energy Mekong River delta, Vietnam. Cont. Shelf Res. 2017, 147, 7–26. doi: 10.1016/j.csr.2017.03.001.

13. McLachlan, R.L.; Ogston, A.S.; Allison, M.A. Implications of tidally-varying bed stress and intermittent estuarine stratification on fine-sediment dynamics through the Mekong’s tidal river to estuarine reach. Cont. Shelf Res. 2017, 147, 27–37. doi: 10.1016/j.csr.2017.07.014.

14. Xing, F.; Meselhe, E.A.; Allison, M.A.; Weathers, H.D. Analysis and numerical modeling of the flow and sand dynamics in the lower Song Hau channel, Mekong Delta. Cont. Shelf Res. 2017, 147, 62–77. doi: 10.1016/j.csr.2017.08.003.

15. Vo, Q.T.; Reyns, J.; Wackerman, C.; Eidam, E.F.; Roelvink, D. Modelling suspended sediment dynamics on the subaqueous delta of the Mekong River. Cont. Shelf Res. 2017, 147(7), 213–230. doi: 10.1016/j.csr.2017.07.013.

16. Ogston, A.S.; Allison, M.A.; Mullarney, J. C.; Nittrouer, C.A. Sediment and hydro-dynamics of the Mekong Delta: From tidal river to continental shelf. Cont. Shelf Res. 2017, 147, 1–6. doi: 10.1016/j.csr.2017.08.022.

17. Thai, N.H.; Thuy, N.B.; Dang, V.H.; Kim, S.; Hole, L.R. Impact of the interaction of surge, wave and tide on a storm surge on the north coast of Vietnam. Procedia IUTAM 2017, 25, 82–91. doi: 10.1016/j.piutam.2017.09.013.

18. Loisel, H.; Mangin, A.; Vantrepotte, V.; Dessailly, D.; Dinh, D.N.; Garnesson, P.; Ouillon, S.; Lefebvre, J.P.; Mériaux, X.; Phan, T.M. Variability of suspended particulate matter concentration in coastal waters under the Mekong’s influence from ocean color (MERIS) remote sensing over the last decade. Remote Sens. Environ. 2014, 150, 218–230. doi: 10.1016/j.rse.2014.05.006.

19. Liu, C.; He, Y.; Des, E.W.; Wang, J. Changes in the sediment load of the Lancang-Mekong River over the period 1965-2003. Sci. China Technol. Sci. 2013, 56(4), 843–852. doi: 10.1007/s11431-013-5162-0.

20. Heege, T.; Kiselev, V.; Wettle, M.; Hung, N.N. Operational multi-sensor monitoring of turbidity for the entire Mekong Delta. Int. J. Remote Sens. 2014, 35(8), 2910–2926. doi: 10.1080/01431161.2014.890300.

21. Fleifle, A.E. Suspended Sediment Load Monitoring Along the Mekong River from Satellite Images. J. Earth Sci. Clim. Change 2013, 04(06), 160. doi: 10.4172/2157-7617.1000160.

22. Hoang, T.B. Research and find solutions and technologies to prevent river bank erosion in Bac Lieu and Ca Mau provinces. Report Scientific Conference 12/27/2017: Southern institute of water resources research, HCM city, 2017.

23. Linh, B.; Bui, L. Modelling bank erosion dependence on natural and anthropogenic factors – Case study of Ganh Hao estuary, Bac Lieu - Ca Mau, Vietnam. Environ. Technol. Innov. 2020, 19, 100975. doi: 10.1016/j.eti.2020.100975.

24. Xuan, N.T.; Duyen, C.M.N.; Long, B.T. Simulating PM2.5 dust pollution and analyzing related factors – The case of Ca Mau province, Vietnam. J. Hydro-Meteorol. 2023, 756(12), 42–58.

25. Phuong, P.V.T.; Hanh, P.T.H.; Long, B.T. Application of remote sensing, GIS to assess the rate and range of coastal erosion in the Mekong River Delta, from Tien Giang to Soc Trang Province. VN J. Hydrometeorol. 2023, 754, 9–25. doi: 10.36335/vnjhm.2023.(754).9-25.

26. Pham, H.T.H.; Bui, L.T. Mechanism of erosion zone formation based on hydrodynamic factor analysis in the Mekong Delta coast, Vietnam. Environ. Technol. Innov. 2023, 30, 103094. doi: 10.1016/j.eti.2023.103094.

27. Hoang, T.T.; Dao, K.N.; Pham, L.T.; Van, N.H. Analysis of riverbank changes in Ho Chi Minh city in the period 1989 - 2015. Sci. Technol. Dev. J. Sci. Earth Environ. 2019, 2(2), 80–88. doi: 10.32508/stdjsee.v2i2.496.

28. Elkafrawy, S.B.; Basheer, M.A.; Mohamed, H.M.; Naguib, D.M. Applications of remote sensing and GIS techniques to evaluate the effectiveness of coastal structures along Burullus headland-Eastern Nile Delta, Egypt. Egypt. J. Remote Sens. Sp. Sci. 2021, 24(2), 247–254. doi: 10.1016/j.ejrs.2020.01.002.

29. Attar, I.M.S.A.; Basheer, M.A. Multi-temporal shoreline analysis and future regional perspective for Kuwait coast using remote sensing and GIS techniques. Heliyon. 2023, 9(9), e20001. doi: 10.1016/j.heliyon.2023.e20001.

30. Chrisben, S.S.; Gurugnanam, B. Coastal transgression and regression from 1980 to 2020 and shoreline forecasting for 2030 and 2040, using DSAS along the southern coastal tip of Peninsular India. Geod. Geodyn. 2022, 13(6), 585–594. doi: 10.1016/j.geog.2022.04.004.

31. Mutaqin, B.W. Shoreline changes analysis in Kuwaru coastal area, Yogyakarta, Indonesia: An application of the digital shoreline analysis system (DSAS). Int. J. Sustain. Dev. Plan. 2017, 12(7), 1203–1214. doi: 10.2495/SDP-V12-N7-1203-1214.

32. Tinh,T.V.; Phong, D.H. Applying remote sensing and gis for study change in coastal areas of Ca Mau cap. VN J. Hydrometeorol. 2017, 684, 41–53.

33. Thanh, N.T. Analysis and evaluation of erosion and deposition processes in Ca Mau by remote sensing and GIS. VN J. Hydrometeorol. 2021, 721, 66–79. doi: 10.36335/vnjhm.2021(721).66-79.

34. Quynh, C.K.N.; Hanh, P.T.H.; Long, B.T. Assessment of the shoreline evolution and coastal erosion trends along Cua Dai beach, Hoi An City, Quang Nam. VN J. Hydrometeorol. 2022, 736(1), 41–53. doi: 10.36335/VNJHM.2022(736(1)).41-53.

35. Thin, V.T.; Duan, P.V.; Thi, N.V.; Hung, N.V.; Van, N.H. Landsat8 disposal service photo identification phase fluctuations and coating plant. J. Forestry. Sci. Technol. 2015, N1, 73–83.

36. U.D. of the Interior. What are the band designations for the Landsat satellites? USGS, 2014.

37. Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 23–35. doi: 10.1016/j.rse.2013.08.029.

38. Teng, J.; Xia, S.; Liu, Y.; Yu, X.; Duan, H.; Xiao, H.; Zhao, C. Assessing habitat suitability for wintering geese by using normalized difference water index (NDWI) in a large floodplain wetland, China. Ecol. Indic. 2021, 122, 107260. doi: 10.1016/j.ecolind.2020.107260.