1 Faculty of Hydrology, Meteorology and Oceanography, Vietnam National University - Hanoi University of Science;

*Corresponding author:; Tel.: +84–966610784


Floods, as natural occurrences, often result in significant impacts on human life. The construction of flood maps plays a crucial role in devising appropriate strategies to mitigate the adverse effects of floods. In recent decades, there has been notable attention towards flood mapping methods utilizing remote sensing images. This paper introduces a methodology for generating an inundation map for rainy season and river network. To achieve this objective, we investigated the use of the recently developed Modified Normalized Difference Water Index (MNDWI) within the Google Earth Engine platform for extracting surface water. The study yielded flood maps extracted with considerable precision, facilitating the calculation and analysis of flood extents within the study area.


Cite this paper

Minh, T.NApplication of MNDWI index for flood damage area calculation in Lam river basin using google earth engine platformJ. Hydro-Meteorol202419, 1-11.


1. King, D.; Macgregor, C. Using social indicators to measure community vulnerability to natural hazards. Aust. J. Emerg. Manage. 2000, 15(3), 52–57.

2. Hebb, A. Floods: mapping vulnerability in the upper Thames watershed under a changing climate. Report XI, CFCAS project of water resources risk and vulnerability to changing climatic conditions. University of Western Ontario, London, 2007.

3. Blaikie, P.; Cannon, R.; Davis, I.; Wisner, B. At risk: Natural hazards, people’s vulnerability, and disasters, 1994.

4. Anh, L.T.; Anh, T.N.; Dat, T.V.; Giang, N.T.; Hung, N.Q.; Kha, D.D.; Ngoc, T.M.; Son, N.T.; Tuan, N.C.; Van, C.T. Flood inundation maps and vulnerability assessment maps due to floods in the basins of the Lam River, Ben Hai - Thach Han, and Thu Bon. Science and Technics Publishing House, 2015.

5. Luan, N.T.; Hung, N.T.; Cuong, V.D.; Huyen, N.T.; Son, P.Q. Research on creating flood maps from Radar remote sensing images applied to the Tra Khuc and Ve River basins, Quang Ngai province. J. Water Resour. Technol. 2017, 39, 1–8.

6. Son, N.T.; Van, C.T. Method of assessing vulnerability - Theory and practice. Part 1: Applicability in assessing flood vulnerability in Central Vietnam. VNU J. Sci.: Nanosci. Sci. Technol. 2012, 2, 115–122.

7. Kieu, T.D. Research on managing large floods in the Lam river basin. Doctoral Thesis, Hanoi, 2012.

8. Tuyen, H.M. Research on developing a decision support framework for water resources management in the Ca River Basin. Ministry of Science and Technology research, 2004–2006.

9. Son, N.T.; Anh, T.N.; Kha, D.D.; Tien, N.X.; Thin, L.V. Testing the impact assessment of Climate Change on flooding in the downstream area of the Lam River. J. Hydrometeorol. 2014, 645, 13–20.

10. An, T.V.; Lanh, N.V. A study to identify weather patterns causing heavy rain in Nghe An province. J. Sci. Technol. 2019, 2, 9–17.

11. Bhusal, A.; Thakur, B.; Kalra, A.; Benjankar, R.; Shrestha, A. Evaluating the effectiveness of best management practices in adapting the impacts of climate change–induced urban flooding. Atmosphere 202415(3), 281.

12. Ámon, G.; Bene, K.; Ray, R.; Gribovszki, Z.; Kalicz, P. Improving flash flood hydrodynamic simulations by integrating leaf litter and interception processes in steep–sloped natural watersheds. Water 202416(5),750.

13. Dulawan, J.M.T.; Imamura, Y.; Amaguchi, H. Social drivers of flood vulnerability: understanding household perspectives and persistence of living in flood zones of Metro Manila, Philippines. Water 202416(6), 799.

14. Van, C.T.; Hung, B.V.; Anh, V.T.V.; Nam, N.V.; Tuan, N.C.; Nguyen, B.Q.; Viet, C.T.; An, N.V.; Son, N.T.; Ninh, L.V (NASATI). Research on developing a method for assessing flood risk in the Mekong Delta region – Pilot application for An Giang province, 2021.

15. Van, C.T.; Son, N.T.; Anh, T.N.; Tuan, N.C. Developing vulnerability indices for flood susceptibility using the Analytic Hierarchy Process (AHP) method – Testing on several commune–level units in Quang Nam province within the lower basin of the Thu Bon River. J. Hydrometeorol. 2017, 643(04), 10–18.

16. Kha, D.D.; Duc, D.D.; Binh, H.T.; Quyen, L.N.; Quang, T.X.; Anh, T.N. Building flood inundation maps for the main river systems in Khanh Hoa province according to climate change scenarios. VNU J. Sci.: Nanosci. Sci. Technol. 2013, 29, 101–102.

17. Anh, T.N.; Duc, D.D.; Kha, D.D.; Quynh, P.T.N.; Binh, H.T.; Dung, D.T.H.; Son, B.M.; Thanh, N. Developing a method to assess the impacts of climate change and sea level rise on technical infrastructure – Testing for the coastal areas of Khanh Hoa province.  VNU J. Sci.: Nanosci. Sci. Technol. 2024, 29(4), 1–12.

18. Long, V.D.; Anh, T.N.; Binh, H.T.; Dinh, D. Introducing the flood forecasting technology for the Ben Hai and Thach Han river systems using the MIKE 11 model. VNU J. Sci.: Nanosci. Sci. Technol. 2010, 26(3), 397.

19. Anh, T.N. Building flood inundation maps for the Ben Hai and Thach Han rivers in Quang Tri province. VNU J. Sci.: Nanosci. Sci. Technol. 2011, 15.

20. Alesheikh, A.A.; Ghorbanali, A.; Nour, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Technol. 2007, 4, 61–66.

21. Toan, D.D.; Quan, N.A.; Son, N.H.; Ngoc, N. Researching the development of flood inundation maps for the lower reaches of the Dak Bla River. J. Water Resour. Environ. Eng. 2015, 28, 1–99.

22. Toan, N.T.; Chau, T.K.; Tam, D.T.; Linh, N.H. Application of remote sensing technology to construct flood inundation maps for the Bui River area during the historic flood of 2018. J. Water Resour. Environ. Eng. 2019, 66, 81–87.

23. Chau, T.K. Mapping extent of flooded areas using Sentinel–1 satellite image. J. Water Resour. Environ. Eng. 2017, 58, 79–82.

24. Li, Z.; Demir, I. MultiRS flood mapper: A google earth engine application for water extent mapping with multimodal remote sensing and quantile–based postprocessing. Environ. Modell. Software 2024, 176, 106022.

25. Liu, C.; Xu, J.; Xu, K.; Yu, J. Mapping large-scale aquaculture ponds in Jiangsu Province, China: An automatic extraction framework based on Sentinel–1 time-series imagery. Aquacult. 2024, 581, 740441.

26. Bandak, S.; Naeini, S.A.R.M.; Komaki, C.B.; Verrelst, J.; Kakooei, M.; Mahmoodi, M.A. Satellite–based estimation of soil moisture content in croplands: A case study in Golestan province, North of Iran. Remote Sens. 202315(8), 2155.

27. Hung, N.Q.; Son, N.T.; Kha, D.D. Development and application of flood vulnerability indies for commune level – A case study in Lam river basine, Nghe An province, Vietnam. International Young Researchers Workshop River Basin Environment and Management, Thailand, 2014.

28. Kieu, T.D.; Dinh, L. Researching indicators of major floods and delineating areas prone to major flooding in the Lam River basin. J. Water Resour. Environ. Eng. 2011, 3–8.

29. Anh, T.N.; Binh, H.T. Report on the development of a 1–D, 2–D integrated hydraulic model for sediment deposition in the Ca River basin. A research project on hydrological adaptation to climate change and the establishment of a multi-stakeholder information system to minimize vulnerability in the North Central region of Vietnam. (CPIS)–11.P04.VIE, 2012–2015.

30. Zhang, C.; Zhang, H.; Tian, S. Phenology–assisted supervised paddy rice mapping with the landsat imagery on google earth engine: Experiments in Heilongjiang province of China from 1990 to 2020. Comput. Electron. Agric. 2023, 212, 108105.

31. Lu, H.;  Zhao, R.; Zhao, L.; Lyu, B.; Wang; J.; Zhang, L. A contrarian growth: The spatiotemporal dynamics of open–surface water bodies on the northern slope of Kunlun Mountains. Ecol. Indic. 2023, 157, 111249.

32. Hoa, N.H.; Anh, N.T. Using the NDWI and MNDWI indices to assess changes in groundwater resources due to mineral extraction activities in Hoanh Bo district, Quang Ninh province. Vietnam J. Sci. Technol. 2017, 169(09), 111–116.

33. Quynh, H.N.N.; Khoi, D.N.; Hoa, H.C.; Bay, N.T. Using landsat satellite images for assessing riverbank changes in the Mekong and Bassac rivers in the An Giang province. J. Hydro-Meteorol. 2018, 9(130).

34. Tuan, V.A.; Hang, L.T.T.; Quang, N.H. Monitoring urban surface water body changes using MNDWI estimated from pan-sharpened optical satellite images. J. Sci. 2018, 15(11b), 29–36.

35. Chien, P.V. Researching water indices identification from Sentinel–2 images on google earth engine: Application for Sa Dec city, Dong Thap province. J. Water Resour. Technol. 2020, 60, 1–9.

36. Anusha, B.N.; Raghu Babu, K.; Rajasekhar, M. Geospatial approaches for monitoring and mapping of water resources in semi-arid regions of Southern India. Environ. Challenges 2022, 8, 100569.

37. Silva, J.B.A.; Almeida, G.L.P.; Almeida, A.C.D.S. Characterization of water status and vegetation cover change in a watershed in Northeastern Brazil. J. South Am. Earth Sci. 2023, 130, 104546.

38. Rashid, Md.B. Monitoring of drainage system and waterlogging area in the human–induced Ganges–Brahmaputra tidal delta plain of Bangladesh using MNDWI index. Heliyon. 2023, 9, e17412.

39. Dong, X.; Hu, C.; Zhao, Y. Novel threshold self-regulating water extraction method. J. Hydrol. Eng. 2023, 28(8), 04023020-1– 04023020-9.

40. Kha, D.D.; Duc, D.D.; Binh, H.T.; Quyen, L.N.; Quang, T.X.; Anh, T.N. Developing a template questionnaire to assess flood resilience of residents for evaluating vulnerability to floods. VNU J. Sci.: Nanosci. Sci. Technol. 2013, 29(2S), 101–112.

41. Kha, D.D.; Son, N.T.; Anh, T.N. Developing maps of flood risk, sensitivity, and resilience to support the creation of flood vulnerability maps in the Lam River basin. National Workshop on Climate Change – Impact Assessment, Vulnerability Evaluation, and Proposal of Adaptation Solutions to Climate Change, Da Nang, Vietnam. 2014, pp. 115–119.

42. Rosenfield, G.H.; Fitzpatrick–Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 223–227.

43. McHugh, M.L. Interrater reliability: The Kappa statistic. Biochem Med. 2012, 22(3), 276–282.

44. Ju, Y. Water bodies’ mapping from Sentinel–2 imagery with modified normalized difference water index at 10m spatial resolution produced by sharpening the SWIR Band. Remote Sens. 2016, 354(8), 1–19.

45. Moreri, K.K. Using Kappa methodology to consider volunteered geographic information in official land administration systems in developing countries. Spatial Inf. Res. 2020, 28, 299–311.