Authors

Affiliations

1 HUTECH University; Hutech University of Applied Sciences; h.phu@hutech.edu.vn

2 Hochiminh City University of Natural Resources and Environment; htnhan_ctn@hcmunre.edu.vn

3 Institute for Environment and Circular Economy Southern; tngocnu043@gmail.com

*Corresponding author: htnhan_ctn@hcmunre.edu.vn; Tel.: +84–975397953

Abstracts

Microplastic research plays a crucial role in identifying microplastic polymers. Scientists use different methods such as Flame tests, Differential thermal scanning, Thermogravimetric analysis, and Infrared spectroscopy to accomplish this. The objective of this study incluce: (i) Firstly, it aims to summarize recent research trends on techniques for determining polymer types in various environments. It provides an overview of each technique and compares their strengths and limitations. (ii) Secondly, it determines the types of microplastics in surface water samples in the Saigon - Dong Nai River basin, during the period 2023. The Fourier transform infrared spectroscopy (FTIR) technique is applied according to the total attenuation method (ATR-FTIR). The study shows that it is possible to quantify and classify microplastics by manual observation or through observation or microscopy. However, determining the type of polymer is almost impossible. To overcome this limitation, scientists use a combination of physical (e.g., light microscopy, magnifying microscopy), chemical (e.g., spectroscopy), and thermal analysis techniques. The study results reveal that there are more than 60 types of microplastics present in the main water supply for daily drinking and drinking purposes of the people of Ho Chi Minh City and neighboring provinces. It provides a foundation for river basin water resource managers to propose appropriate water resource management measures and programs during the process of water exploitation and use in the area.

Keywords

Cite this paper

Phu, H.; Han, H.T.N.; Nu, T.N. Analytical methods used in microplastics identification: A review. J. Hydro-Meteorol. 2024, 19, 12-22. 

References

1. PlasticsEurope. Plastics - the Facts 2017: An analysis of european plastics production, demand and waste data. 70.           Available online: https://search.issuelab.org/resource/plastics-the-facts-2017-an-analysis-of-european-plastics-production-demand-and-waste-data.html (Accessed February 2024).

2. Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.; McGonigle, D.; Russell, A.E. Lost at sea: where is all the plastic?. Science 2004, 304, 838. https://doi.org/10.1126/science.1094559.

3. Kershaw, P.; Turra, A.; Galgani, F. Guidelines for the monitoring and assessment of plastic litter in the ocean. GESAMP Reports and Studies, 2019, pp. 99. Available online: https://vidamarina.info/wp-content/uploads/gesamp2019.pdf.

4. Phu, H.; Han, H.T.N.; Thao, N.L.N. Plastic waste, microplastics in the Saigon – Dong Nai river basin, the risk of impacts on the health of people. J. Hydro-Meteorol. 2022, 736(1), 14–27. https://doi.org/10.36335/VNJHM.2022(736(1)).14-27.

5. Klein, S.; Dimzon, I.K.; Eubeler, J.; Knepper, T.P. Analysis, occurrence, and degradation of microplastics in the aqueous environment. Springer International Publishing, Cham, 2018, pp. 51.

6. Loder, M.G.J.; Kuczera, M.; Mintenig, S.; Lorenz, C.; Gerdts, G. Focal plane array detector-based micro-fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ. Chem. 2015, 12(5), 563–581. https://doi.org/10.1071/EN14205.

7. Anger, P.; Esch, E.V.D.; Baumann, T.; Elsner, M.; Niessner, R.; Ivleva, N.P. Raman microspectroscopy as a tool for microplastic particle analysis. Trac Trends Anal. Chem. 2018, 109, 214–226. https://doi.org/10.13140/RG.2.2.15927.47524.

8. Dümichen, E.; Braun, U.; Senz, R.; Fabian, G.; Sturm, H. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry. J. Chromatogr. A. 2014, 1354, 117–128. https://doi.org/10.1016/j.chroma.2014.05.057.

9. Fischer, M.; Scholz-Bottcher, B.M. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass 764 spectrometry. Environ. Sci. Technol. 2017, 51, 5052–5060. https://doi.org/10.1021/acs.est.6b06362.

10. Van Cauwenberghe, L.L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C.R. Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 2015, 111, 5–17. https://doi.org/10.1016/j.marenvres.2015.06.007.

11. Rocha-Santos, T.; Duarte, A.C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. Trac Trends Anal. Chem. 2015, 65, 47–53. https://doi.org/10.1016/j.trac.2014.10.011.

12. Wagner, M.; Scherer, C.; Alvarez-Munoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; Rodriguez-Mozaz, S.; Urbatzka, R.; Vethaak, A.D.; Winther-Nielsen, M.; Reifferscheid, G. Microplastics in freshwater ecosystems: what we know and what we need to know, Environ. Sci. Eur. 2014, 26, 1–9. https://doi.org/10.1186/s12302-014-0012-7.

13. Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future. Sci. Total Environ. 2017, 586, 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190.

14. National Oceanic and Atmospheric Administration. Microplastic marine debris fact sheet. 2008. Available online: https://marinedebris.noaa.gov/fact-sheets/microplastic-marine-debris-fact-sheet (Accessed February 2024).

15. Tunali, M.; Uzoefuna, E.N.; Tunali, M.M.; Yenigun, O. Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris. Sci. Total Environ. 2020, 743, 140479. https://doi.org/10.1016/j.scitotenv.2020.140479.

16. Dehghani, S.; Moore, F.; Akhbarizadeh, R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ. Sci. Pollut. Res. Int. 2017, 24(25), 20360–20371. https://doi.org/10.1007/s11356-017-9674-1.

17. Sabri, N.H.; Muhammad, A.; Abdul Rahim, N.H.; Roslan, A.; Abu Talip, A.R. Feasibility study on co-pyrolyzation of microplastic extraction in conventional sewage sludge for the cementitious application. Mater. Today Proc. 2021, 46, 2112–2117. https://doi.org/10.1016/j.matpr.2021.05.439.

18. Mossotti, R.; Dalla Fontana, G.; Anceschi, A.; Gasparin, E.; Battistini, T. Preparation and analysis of standards containing microfilaments/microplastic with fibre shape. Chemosphere 2021, 270, 129410. https://doi.org/10.1016/j.chemosphere.2020.129410.

19. REDSTAR. Manual document thermal analysis method. 2015. Available online: http://redstarvietnam.com/media/lib. (Accessed February 2024).

20. Claessens, M.; Meester, S.D.; Landuyt, L.V.; Clerck, K.D.; Janssen, C.R. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 2011, 62(10), 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030.