1 Faculty of Environment and Natural Resources, University of Technology, Vietnam National University, Ho Chi Minh City;;

2 Envim Lab, University of Technology, Vietnam National University, Ho Chi Minh City; 

*Correspondence:; Tel.: +84–918017376


Near real-time information about global atmospheric composition, including PM2.5 fine dust, is valuable because it helps forecast air quality and manage environmental disasters. Recently, NASA’s Global Modeling and Assimilation Office  has released a set of near real-time Goddard Earth Observing System models that help analyze and forecast global air quality, named GEOS-CF (GEOS Composition Forecast). In particular, GEOS-CF can simulate the transport from the stratosphere to the troposphere (the stratosphere to troposphere transport) which is technically very difficult. In Vietnam’s challenging conditions, research and application of GEOS-CF output results must be made. In this study, the authors developed a tool named ENAR (Envim Nasa Analysis Result) to help interpret GEOS-CF results provided free of charge by NASA to form PM2.5 pollution maps for each area hourly across the entire territory of Vietnam. ENAR was applied to build pollution maps for the first three months 2024. The results were analyzed to clarify the range of pollution levels for each area, including the Hoang Sa and Truong Sa archipelagos, Vietnam. These results allow scientific agencies to obtain reliable information for studies predicting this type of pollution.


Cite this paper

Uyen, L.K.; Binh, P.Q.; Long, B.T. Exploiting the results of running the GEOS-CF model to evaluate PM2.5 concentration in near real-time in Vietnam. J. Hydro-Meteorol. 2024, 19, 79-89.


1. Bui, L.T.; Nguyen, N.T.H.; Nguyen, P.H. Chronic and acute health effects of ­ PM2.5 exposure and the basis of pollution control targets. Environ. Sci. Pollut. Res. 2023, 30(33), 1–23. doi: 10.1007/s11356-023-27936-9.

2. Nguyen, T.H.; Nagashima, T.; Van Doan, Q. Air quality modelling study on the controlling factors of fine particulate matter (PM2.5) in Hanoi: A case study in December 2010. Atmosphere 2020, 11(7), 733. doi: 10.3390/atmos11070733.

3. Hieu, V.; Quynh, L.X.; Ho, P.N.; Hens, L. Health Risk Assessment of Mobility-Related Air Pollution in Ha Noi, Vietnam. J. Environ. Prot. 2013, 04(10), 1165–1172. doi: 10.4236/jep.2013.410133.

4. Di, Q.; Kloog, I.; Koutrakis, P.; Lyapustin, A.; Wang, Y.; Schwartz, J. Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States. Environ. Sci. Technol. 2016, 50(9), 4712–4721. doi: 10.1021/acs.est.5b06121.

5. Lim, S.S.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. doi: 10.1016/S0140-6736(12)61766-8.

6. Slama, R.; et al. Traffic-related atmospheric pollutants levels during pregnancy and offspring’s term birth weight: A study relying on a land-use regression exposure model. Environ. Health Perspect. 2007, 115(9), 1283–1292. doi: 10.1289/ehp.10047.

7. Halonen, J.I.; Lanki, T.; Yli-Tuomi, T.; Kulmala, M.; Tiittanen, P.; Pekkanen, J. Urban air pollution, and asthma and COPD hospital emergency room visits. Thorax 2008, 63(7), 635–641. doi: 10.1136/thx.2007.091371.

8. Jia Y.; et al. Effect of Air Pollution on Heart Failure: Systematic Review and Meta-Analysis. Environ. Health Perspect. 2023, 131(7), 76001. doi: 10.1289/EHP11506.

9. Dominici, F.; et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. Jama 2006, 295(10), 1127–1134. doi: 10.1001/jama.295.10.1127.

10. Peng, R.D.; et al. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ. Health Perspect. 2009, 117(6), 957–963. doi: 10.1289/ehp.0800185.

11. Laden, F.; Schwartz, J.; Speizer, F.E.; Dockery, D.W. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard six cities study. Am. J. Respir. Crit. Care Med. 2006, 173(6), 667–672. doi: 10.1164/rccm.200503-443OC.

12. Pinto, J.P.; Lefohn, A.S.; Shadwick, D.S. Spatial variability of PM2.5 in urban areas in the United States. J. Air Waste Manag. Assoc. 2004, 54(4), 440–449. doi: 10.1080/10473289.2004.10470919.

13. Ho, B.Q.; Clappier, A.; François, G. Air pollution forecast for Ho Chi Minh City, Vietnam in 2015 and 2020. Air Qual. Atmos. Heal. 2011, 4(2), 145–158. doi: 10.1007/s11869-010-0087-2.

14. Bui, L.T.; Nguyen, P.H.; My Nguyen, D.C. Linking air quality, health, and economic effect models for use in air pollution epidemiology studies with uncertain factors. Atmos. Pollut. Res. 2021, 12(9), 101118. doi: 10.1016/j.apr.2021.101118.

15. Le, T.N.; Nguyen, C.M.D.; Nguyen, H.P.; Bui, T.L. Assessment of public health impacts associated with short-term PM2.5 pollution exposure: A case study in Binh Duong province, Vietnam. VN J. Hydrometeorol. 2023, 746, 70–87. doi: 10.36335/vnjhm.2023(746).70-87.

16. Nguyen, G.T.H.; Shimadera, H.; Uranishi, K.; Matsuo, T.; Kondo, A. Numerical assessment of PM2.5 and O3 air quality in continental Southeast Asia: Impacts of future projected anthropogenic emission change and its impacts in combination with potential future climate change impacts. Atmos. Environ. 2020, 226, 117398. doi: 10.1016/j.atmosenv.2020.117398.

17. Knowland, K.E. Global modeling and assimilation office file specification for MERRA-2 climate statistics products, 2020.

18. Bey, I.; et al. Global modelling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. Atmos. 2001, 106(D19), 23073–23095. doi:

19. Keller, C.A.; Long, M.S.; Yantosca, R.M.; Da Silva, A.M.; Pawson, S.; Jacob, D.J. “HEMCO v1.0: A versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci. Model Dev. 2014, 7(4), 1409–1417. doi: 10.5194/GMD-7-1409-2014.

20. Keller, C.A.; Knowland, K.E. Description of the NASA GEOS Composition Forecast Modeling System GEOS‐CF v1 0.pdf. J. Adv. Model. Earth Syst. 2021, 13(4), e2020MS002413. doi: 10.1029/2020MS002413.

21. Knowland, K.E.; et al. NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric Composition. J. Adv. Model. Earth Syst. 2022, 14(6), 1–28. doi: 10.1029/2021MS002852.

22. Eastham, S.D.; Weisenstein, D.K.; Barrett, S.R.H. Development and evaluation of the unified tropospheric-stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem. Atmos. Environ. 2014, 89, 52–63. doi: 10.1016/j.atmosenv.2014.02.001.

23. Bianz, H.; Prather, M.J. Fast-J2: Accurate simulation of stratospheric photolysis in global chemical models. J. Atmos. Chem. 2002, 41(3), 281–296. doi: 10.1023/A:1014980619462.

24. Mao, J.; et al. Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring. Atmos. Chem. Phys. 2010, 10(13), 5823–5838. doi: 10.5194/acp-10-5823-2010.

25. Sandu, A.; Sander, R. Technical note: Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos. Chem. Phys. 2006, 6(1), 187–195. doi: 10.5194/acp-6-187-2006.

26. Colarco, P.; Da Silva, A.; Chin, M.; Diehl, T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. Atmos. 2010, 115(D14), D14207. doi: 10.1029/2009JD012820.

27. Randles, C.A.; et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Clim. 2017, 30(17), 6823–6850. doi: 10.1175/JCLI-D-16-0609.1.

28. Janssens-Maenhout, G.; et al. HTAP-v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 2015, 15(19), 11411–11432. doi: 10.5194/acp-15-11411-2015.

29. Schultz, M.G.; et al. Global wildland fire emissions from 1960 to 2000. Global Biogeochem. Cycles 2008, 22(2), 1–17. doi: 10.1029/2007GB003031.

30. Van der Gon, H.D.; Hendriks, C.; Kuenen, J.; Segers, A.; Visschedijk, A. TNO Report: Description of current temporal emission patterns and sensitivity of predicted AQ for temporal emission patterns. TNO, Princetonlaan 6, 3584 CB Utrecht, The Netherlands, 2011, pp. 1–22.

31. Bindle, L.; et al. Atmospheric chemistry model. Cambridge University Press, 2021, pp. 5977–5997.