Authors

Affiliations

1 Center for Water Resources Software technology; khuongvanhai@gmail.com

2 Faculty of Hydrology, Meteorology and Oceanography, University of Science, Vietnam National University, Hanoi; No. 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam; nguyentiengiang@hus.edu.vn; giangnt@vnu.edu.vn

3 Water Resources Institute, Ha Noi, Viet Nam; No. 8 Phao Dai Lang, Lang Thuong, Dong Da, Ha Noi, Viet Nam; bichdam555@gmail.com; dtnbich@monre.gov.vn

*Corresponding author: khuongvanhai@gmail.com; Tel.: +84–974183835

Abstracts

Reconstruction of streamflow in transnational river basins is of great significance in water resource planning and management in Vietnam. Among the ten biggest river basins (each having a total basin area of greater than 10,000 km2) there are eight transnational river basins, and Vietnam is located downstream in the five basins of those eight. These include the Mekong River with 92% of the area belonging to foreign countries; the Red River with 51% located abroad, mainly China; the Dong Nai River with 17% belonging to Cambodia; the Ma River with nearly 38% belongs to Laos and the Ca River with 35% belongs to Laos. This study uses numerical modeling methods to reconstruct the streamflow from China to Vietnam in the Da River basin at Muong Te hydrological station. The VIC model was applied with daily climate data (rain, wind speed, maximum and minimum temperature) from 1981 to 2020 to reconstruct streamflow at Muong Te station in the Da River basin. Combining the VIC Model and the Shuffled Complex Evolution method to determine the most suitable set of parameters for the Da River basin creates a powerful tool for studying hydrological processes on river basins. Research results also show that the streamflow reconstruction for the period before 2008 when the upstream reservoirs were not yet in operation is highly reliable.

Keywords

Cite this paper

Hai, K.V.; Giang, N.T.; Bich, D.T.N. Applying the variable infiltration capacity (VIC) model to reconstructing streamflow data in the Da River basin at Muong Te hydrological stationJ. Hydro-Meteorol. 202420, 52-65.

References

1. Meko, D.M.; Woodhouse, C.A. Application of streamflow reconstruction to water resources management. In: Hughes, M.; Swetnam, T.; Diaz, H. (eds) Dendroclimatology. Developments in Paleoenvironmental Research, vol 11. Springer, Dordrecht. 2011, pp. 231–261. https://doi.org/10.1007/978-1-4020-5725-0_8.

2. Ibrahim, A.B.; Cordery, I.A.N. Estimation of recharge and runoff volumes from ungauged catchments in eastern Australia. Hydrol. Sci. J. 1995, 40(4), 499–515. https://doi.org/10.1080/02626669509491435.

3. Moradkhani, H.; Sorooshian, S. General review of rainfall-runoff modeling: model calibration, data assimilation, and uncertainty analysis. Hydrol. Model. Water Cycle 2008, 1–24. https://doi.org/10.1007/978-3-540-77843-1_1.

4. Samuel, R.D.; Tenenbaum, G. How do athletes perceive and respond to change-events: An exploratory measurement tool. Psychol. Sport Exerc. 2011, 12(4), 392–406. https://doi.org/10.1016/j.psychsport.2011.03.002.

5. Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 2019, 23(12), 5089–5110. https://doi.org/10.5194/hess-23-5089-2019.

6. Addor, N.; Newman, A.J.; Mizukami, N.; Clark, M.P. The CAMELS data set: catchment attributes and meteorology for large-sample studies. Hydrol. Earth Syst. Sci. 2017, 21(10), 5293–5313. https://doi.org/10.5194/hess-21-5293-2017.

7. Coxon, G.; Addor, N.; Bloomfield, J.P.; Freer, J.; Fry, M.; Hannaford, J.; Howden, N.J.K.; Lane, R.; Lewis, M.; Robinson, E.L.; Wagener, T.; Woods, R. CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain. Earth Syst. Sci. Data 2020, 12(4), 2459–2483. https://doi.org/10.5194/essd-12-2459-2020.

8. Götzinger, J.; Bárdossy, A. Comparison of four regionalisation methods for a distributed hydrological model. J. Hydrol. 2007, 333(2), 374–384. https://doi.org/10.1016/j.jhydrol.2006.09.008.

9. Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Glob. Planet. Change 1996, 13(1–4), 195–206. https://doi.org/10.1016/0921-8181(95)00046-1.

10. Hamman, J.J.; Nijssen, B.; Bohn, T.J.; Gergel, D.R.; Mao, Y. The variable infiltration capacity model version 5 (VIC-5): Infrastructure improvements for new applications and reproducibility. Geosci. Model Dev. 2018, 11(8), 3481–3496. https://doi.org/10.5194/GMD-11-3481-2018.

11. Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Glob. Planet. Change 1996, 13(1–4), 195–206. https://doi.org/10.1016/0921-8181(95)00046-1.

12. Zhao, Q.; Ye, B.; Ding, Y.; Zhang, S.; Yi, S.; Wang, J.; Shangguan, D.; Zhao, C.; Han, H. Coupling a glacier melt model to the variable infiltration capacity (VIC) model for hydrological modeling in north-western China. Environ. Earth Sci. 2013, 68, 87–101. https://doi.org/10.1007/s12665-012-1718-8.

13. Wang, G.Q.; Zhang, J.Y.; Jin, J.L.; Pagano, T.C.; Calow, R.; Bao, Z.X.; Liu, C.S.; Liu, Y.L.; Yan, X.L. Assessing water resources in China using PRECIS projections and a VIC model. Hydrol. Earth Syst. Sci. 2012, 16, 231–240. https://doi.org/10.5194/hess-16-231-2012.

14. Gao, H.; Tang, Q.; Shi, X.; Zhu, C.; Bohn, T.; Su, F.; Sheffield, J.; Pan, M.; Letternmaier, D.; Wood, E.F. Water budget record from variable infiltration capacity (VIC) model. 2010, pp. 120–173. Available online: https://eprints.lancs.ac.uk/id/eprint/89407/1/Gao_et_al_VIC_2014.pdf (Accessed 20 April 2023).

15. Gou, J.; Miao, C.; Duan, Q.; Tang, Q.; Di, Z.; Liao, W.; Wu, J.; Zhou, R. Sensitivity analysis-based automatic parameter calibration of the VIC model for streamflow simulations over China. Water Resour. Res. 2020, 56(1), e2019WR025968. https://doi.org/10.1029/2019WR025968.

16. Dang, T.D.; Chowdhury, A.F.M.K.; Galelli, S. On the representation of water reservoir storage and operations in large-scale hydrological models: Implications on model parameterization and climate change impact assessments. Hydrol. Earth Syst. Sci. 2020, 24(1), 397–416. https://doi.org/10.5194/HESS-24-397-2020.
17. Anees, M.T.; Abdullah, K.; Nawawi, M.N.M.; Ab Rahman, N.N.N.; Piah, A.R.Mt.; Zakaria, N.A.; Syakir, M.I.; Omar, A.K.M. Numerical modeling techniques for flood analysis. J. African Earth Sci. 2016, 124, 478–486. https://doi.org/10.1016/J.JAFREARSCI.2016.10.001.
18. Nguyen-Xuan, T.; Ngo-Duc, T.; Kamimera, H.; Trinh-Tuan, L.; Matsumoto, J.; Inoue, T.; Phan-Van, T. The Vietnam gridded precipitation (VnGP) dataset: Construction and validation. SOLA 2016, 12, 291–296. https://doi.org/10.2151/SOLA.2016-057.
19. Han, J.; Miao, C.; Gou, J.; Zheng, H.; Zhang, Q.; Guo, X. A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations. Earth Syst. Sci. Data 2023, 15(7), 3147–3161. https://doi.org/10.5194/ESSD-15-3147-2023.
20. Datasets ECMWF. Avalable online: https://www.ecmwf.int/en/forecasts/datasets (Accessed on 05 June 2024).
21. Dataset ALOS@EORC. Avalable online: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm (Accessed on 05 June 2024).
22. FAO/UNESCO Soil Map of the World. FAO soils portal. Food and Agriculture Organization of the United Nations. Avalable online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ (Accessed on 05 June 2024).
23. Clamarche, “Land Cover CCI product user guide version 2.0”.
24. Demaria, E.M.; Nijssen, B.; Wagener, T. Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model. J. Geophys. Res. Atmos. 2007, 112(D11), 1–15. https://doi.org/10.1029/2006JD007534.
25. Wi, S.; Ray, P.; Demaria, E.M.C.; Steinschneider, S.; Brown, C. A user-friendly software package for VIC hydrologic model development. Environ. Model. Softw. 2017, 98, 35–53. https://doi.org/10.1016/J.ENVSOFT.2017.09.006.
26. Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158(3-4), 265–284. https://doi.org/10.1016/0022-1694(94)90057-4.
27. Dang, T.D.; Chowdhury, A.F.M.K.; Galelli, S. On the representation of water reservoir storage and operations in large-scale hydrological models: Implications on model parameterization and climate change impact assessments. Hydrol. Earth Syst. Sci. 2020, 24(1), 397–416. https://doi.org/10.5194/HESS-24-397-2020.
28. Linh, B.H.; Phuong, T.A. Assessment of the impact of reservoirs on flow variations on the Da River. VN J. Hydrometeorol. 2021, 731, 97–107. https://doi.org/10.36335/VNJHM.2021(731).97-107.
29. Luong, N.D. Application of VIC hydrological model for simulating river flow of red river system to support water resource management. J. Sci. Technol. Civ. Eng. HUCE 2017, 11(6), 198–204.
30. Hiep, N.H.; Luong, N.D.; Nga, T.T.V.; Hieu, B.T.; Ha, U.T.T.; Duong, B.D.; Long, V.D.; Hossain, F.; Lee, H. Hydrological model using ground- and satellite-based data for river flow simulation towards supporting water resource management in the Red River Basin, Vietnam. J. Environ. Manage. 2018, 217, 346–355. https://doi.org/10.1016/J.JENVMAN.2018.03.100.
31. Li, Y.; He, D.; Li, X.; Zhang, Y.; Yang, L. Contributions of climate variability and human activities to runoff changes in the upper catchment of the Red river basin, China. Water 2016, 8, 414. https://doi.org/10.3390/w8090414.
32. Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall‐runoff models. Water Resour. Res. 1992, 28(4), 1015–1031. https://doi.org/10.1029/91WR02985.