Authors

Affiliations

1 Department of Natural Resources and Environment Lam Dong Province, Dalat, Vietnam, 54 Pasteur, Ward 4, Dalat City, Lam Dong Province, Vietnam; hungmtk25@gmail.com

2 Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268. Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; lvtrung@hcmut.edu.vn; volephu@hcmut.edu.vn

3 Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam; lvtrung@hcmut.edu.vn; volephu@hcmut.edu.vn

*Corresponding author: hungmtk25@gmail.com; Tel.: +84–886138809 

Abstracts

Hydrological droughts have become more severe due to the compounded effects of climate change and anthropogenic activities. This study aims to assess how climate change could impact hydrological droughts at the sub-basin scale for the Upper Part of Dong Nai (UPDN) river basin. The study used the Soil and Water Assessment Tool (SWAT) to simulate hydrological conditions based on climate change scenarios of SSP2-4.5 and SSP5-8.5 from the CMIP6 projections for the future period of 2030s (2021-2040) and 2050s (2041-2060). The streamflow drought index (SDI) was applied to evaluate the drought severity and frequency. The findings indicate a clear increasing trend in minimum (Tmin) and maximum temperatures (Tmax) relative to yearly rainfall. Under the SSP2-4.5 scenario, yearly rainfall shows a slight increase. However, under the SSP5-8.5 scenario, annual rainfall has a slight increase in the West-Southwest and a decrease in the East-Southeast regions. Rainfall trends show a decrease in the dry season and an increase in the rainy season. The frequency and severity of hydrological droughts can vary between sub-basins. Da Tam, Don Duong, Da Quyn, Da Dang, Dak Nong, Dong Nai 2, and Dak R‘Keh are the sub-basins that have more extreme drought conditions compared to the rest of the basins. These results emphasize the need for targeted drought management strategies in the UPDN river basin to build resilience against future climate impacts.

Keywords

Cite this paper

Hung, P.; Trung, L.V.; Phu, V.L. Mapping hydrological drought under the CMIP6 climate change scenarios in sub-basin scale: A case study in the upper part of Dong Nai river basinJ. Hydro-Meteorol. 202421, 57-75.

References

1. Liming, G.; Yaonan, Z. Spatio-temporal variation of hydrological drought under climate change during the period 1960–2013 in the Hexi Corridor, China. J. Arid. Land 2016, 8(2), 157–171.

2. Benyoussef, S.; Arabi, M.; Yousfi, Y.E.; Cheikh, B.B.; Abdaoui, A.; Azirar, M.; Mechkirrou, L.; Ouarghi, H.E.; Zegzouti, Y.F.; Boughrous, A.A. Climate Change and Water Resources Management in the Ghis-Nekor Watershed (North of Morocco) – A Comprehensive Analysis Using SPI, RDI and DI Indices. Ecol. Eng. Environ. Technol. 2024, 25(2), 196–209.

3. Li, Q.; Ye, A.; Wada, Y.; Zhang, Y.; Zhou, J. Climate change leads to an expansion of global drought-sensitive area. J. Hydrol. 2024, 632(130874), 1–9.

4. Tri, D.Q.; Dat, T.T.; Truong, D.D. Application of meteorological and hydrological drought indices to establish drought classification maps of the Ba river basin in Vietnam. Hydrology 2019, 6(49), 1–20.

5. Ngan, T.T.K.; Khoi, D.N. Analysing the impact of hydropower dams on streamflow in the Be river basin. VN J. Sci. Technol. Eng. 2019, 16(4), 35–39.

6. Wu, J.; Chen, X.; Gao, L.; Yao, H.; Chen, Y.; Liu, M. Response of hydrological drought to meteorological drought under the influence of large reservoir. Adv. Meteorol. 2016, 16(2197142), 1–11.

7. Langen, S.C.H.; Costa, A.C.; Neto, G.G.R.; Oel, P.R. Effect of a reservoir network on drought propagation in a semi-arid catchment in Brazil. Hydrol. Sci. J. 2021, 66(10), 1567–1583.

8. IPCC. Climate Change 2022: Impacts, adaptation and vulnerability - working group II contribution to the sixth assessment report of the intergovernmental panel on climate change. New York, USA, 2022.

9. Thanh, N.D.; Nguyen, M.H.; Pannier, E.; Woillez, M.N.; Drogoul, A.; Huynh, T.P.L.; Le, T.T.; Nguyen, T.T.H.; Nguyen, T.T.; Nguyen, T.A.; Thomas, F.; Truong, C.Q.; Vo, Q.T.; Vu, C.T. Climate change in Viet Nam: Impacts and adaptation. A COP26 assessment report of the GEMMES Viet Nam project. Paris, 2021.

10. IPCC. The physical science basis. New York, USA, 2021.

11. Huong, N.T.; Kim, Y.T.; Kwon, H.H. Evaluation and selection of CMIP6 GCMs for long-term hydrological projections based on spatial performance assessment metrics across South Korea. J. Water Clim. Change 2023, 14(8), 2663–2678.

12. Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; Lutz, W. The shared socio-economic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change 2017, 42, 153–168.

13. Sam, T.T.; Khoi, D.N.; Thao, N.T.T.; Nhi, P.T.T.; Quan, N.T.; Hoan, N.X.; Nguyen, V.T. Impact of climate change on meteorological, hydrological and agricultural droughts in the Lower Mekong River Basin: a case study of the Srepok Basin, Vietnam. Water Environ. J. 2019, 33, 547–559.

14. Khoi, D.N.; Sam, T.T.; Loi, P.T.; Hung, B.V.; Thinh, N.V. Impact of climate change on hydro-meteorological drought over the Be river basin, Vietnam. J. Water Clim. Change 2021, 12(7), 3159–3169.

15. Sarwar, A.N.; Waseem, M.; Azam, M.; Abbas, A.; Ahmad, I.; Lee, J.E.; Haq, F.U. Shifting of meteorological to hydrological drought risk at regional scale. Appl. Sci. 2022, 12(5560), 1–14.

16. Mahdavi, P.; Kharazi, H.G. Impact of climate change on droughts: a case study of the Zard river basin in Iran. Water Pract. Technol. 2023, 18(10), 2258–2276.

17. Pandhumas, T.; Kuntiyawichai, K.; Jothityangkoon, C.; Suryadi, F.X. Assessment of climate change impacts on drought severity using SPI and SDI over the Lower Nam Phong River Basin, Thailand. Hydrology 2020, 47(3), 326–338.

18. Tran, T.-N.-D.; KimDo, S.; Nguyen, B.Q.; Tran, V.N.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Lakshmi, V. Investigating the future flood and drought shifts in the transboundary Srepok river basin using CMIP6 projections. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7516–7529.

19. Vietnam MONRE. Report on general planning of Dong Nai river basin period 2021 - 2030, vision to 2050. Ha Noi, Vietnam, 2023, pp. 1–281.

20. Hung, P.; Trung, L.V.; Vo, P.L. Decision support tool for integrated water resources management based on GIS, remote sensing and SWAT model: A case study in the upper part of Dong Nai river basin, Vietnam. In Advances in Research on Water Resources and Environmental Systems. GTER 2022. Environmental Science and Engineering, Vo, P.L.; Tran, D.A.; Pham, T.L.; Le Thi Thu, H.; Nguyen Viet, N.; Ed. Springer: Gewerbestrasse 11, 6330 Cham, Switzerland, 2023, pp. 361–388.

21. Jolk, C.; Greassidis, S.; Jaschinski, S.; Stolpe, H.; Zindler, B. Planning and decision support tools for the integrated water resources management in Vietnam. Water 2010, 2, 711–725.

22. Hung, P. Application of GIS, remote sensing and SWAT in integrated water resources management: A case study in the upper part of Dong Nai river basin. Ho Chi Minh City University of Technology (HCMUT) - Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 2022.

23. Nguyen-Duy, T.; Ngo-Duc, T.; Desmet, Q. Performance evaluation and ranking of CMIP6 global climate models over Vietnam. J. Water Clim. Change 2023, 14(6), 1831–1846.

24. Hung, P.; Quyen, N.T.N.; Trung, L.V.; Phu, V.L. Performance evaluation of some CMIP6-GCMs in simulating rainfall and temperature in the upper part of Dong Nai river basin. VN J. Hydrometeorol. 2024, 762, 47–61.

25. Tran, A.Q.; Ngo, D.T.; Espagne, E.; Trinh, T.L. A 10-km CMIP6 downscaled dataset of temperature and precipitation for historical and future Vietnam climate. Sci. Data 2023, 10(1), 1–12.

26. Department of Climate Change, V.N.M. National Climate Change Impacts and Adaptation Final Report. Ha Noi, Vietnam, 2022.

27. Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9(5), 1937–1958.

28. Vietnam Prime Minister. Decision No. 1895/QD-TTg dated December 25, 2019 on the promulgation of inter-reservoir operating procedures in the Dong Nai river basin. Ha Noi, 2019.

29. Vietnam Ministry of Natural Resources and Environment. Circular 64/2017/TT-BTNMT Regulations on determining minimum flows in rivers, streams and downstream of reservoirs, dams. Ha Noi, Vietnam, 2017, pp. 1–8.

30. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Introduction and history. Soil and Water Assessment Tool Theoretical Documentation Version 2009, Texas Water Resources Institute Technical Report No. 406: Texas A&M University System College Station, Texas 77843-2118, 2011, pp. 6–10.

31. Hung, P.; Le, T.V.; Vo, P.L.; Duong, H.C.; Mostafizurb, R.M. Vulnerability assessment of water resources using GIS, remote sensing and SWAT model – A case study: The upper part of Dong Nai river basin, Vietnam. Int. J. River Basin Manage. 2021, 20, 1–16.

32. Mango, L.M.; Melesse, A.M.; McClain, M.E.; Gann, D.; Setegn, S.G. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling tudy to support better resource management. Hydrol. Earth Syst. Sci. 2011, 15, 2245–2258.

33. Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50(3), 885–900.

34. Khoi, D.N.; Thom, V.T. Parameter uncertainty analysis for simulating streamflow in a river catchment of Vietnam. Global Ecol. Conserv.   2015, 4, 538–548.

35. Padhiary, J.; Patra, K.C.; Dash, S.S. A novel approach to identify the characteristics of drought under future climate change scenario. Water Resour. Manage. 2022, 36, 5163–5189.

36. Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A software for drought analysis based on drought indices. Earth Sci. Inf. 2015, 8(3), 697–709.

37. Tigkas, D.; Vangelis, H.; Proutsos, N.; Tsakiris, G. Incorporating aSPI and eRDI in drought indices calculator (DrinC) software for agricultural drought characterisation and monitoring. Hydrology 2022, 9(100), 1–14.

38. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. Proceeding of the 8th Conf. Appl. Climatol. Anaheim Calif. 1993, pp. 179–184.

39. Can, T.; Xiaoling, C.; Jianzhong, L.; Gassman, P.W.; Sabine, S.; José-Miguel, S.P. Assessing impacts of different land use scenarios on water budget of Fuhe River, China using SWAT model. Int. J. Agric. Biol. Eng. 2015, 8(3), 95–109.

40. Wang, L.; Shu, Z.; Wang, G.; Sun, Z.; Yan, H.; Bao, Z. Analysis of future meteorological drought changes in the Yellow river basin under climate change. Water 2022, 14(1896), 1–20.

41. Shin, J.Y.; Chien, P.V.; Um, M.J.; Kim, H.; Sung, K. Projection of changes in rainfall and drought based on CMIP6 scenarios on the Ca river basin, Vietnam. Water 2024, 14(1914), 1–19.

42. Anaraki, M.V.; Kadkhodazadeh, M.; Morshed-Bozorgde, A.; Farzin, S. Predicting rainfall response to climate change and uncertainty analysis: Introducing a novel downscaling CMIP6 models technique based on the stacking ensemble machine learning. J. Water Clim. Change 2023, 14(10), 3671–3691.

43. Tran, A.Q.; Ngo, D.T.; Espagne, E.; Trinh, T.L. A high-resolution projected climate dataset for Vietnam: Construction and preliminary application in assessing future change. J. Water Clim. Change 2022, 13(9), 3379–3399.