Authors
Affiliations
1 Viet Nam Institute of Meteorology, Hydrology and Climate Change;
ducnam.mi@gmail.com; vvthang26@gmail.com; kientb@imh.ac.vn
2 Hanoi University of Sciences-Vietnam National University; congthanh1477@gmail.com
*Corresponding author: kientb@imh.ac.vn; Tel.: +84–989903773
Abstracts
Data assimilation plays a particularly important role in numerical weather prediction models (NWPs). It ingeste observational data into the initial fields of NWPs, improving their initial conditions to better represent the actual atmospheric conditions. This enhancement consequently leads to improved forecast accuracy of NWP. Globally, three-dimensional variational assimilation (3DVAR) and four-dimensional variational assimilation (4DVAR) methods have been widely used, with 4DVAR considered the most advanced technique. This study will be focused on data assimilation methods using the WRFDA system with WRF-ARW Core. This arrtice was investigated cases without data assimilation of 3DVAR and 4DVAR with different assimilation windows. Evaluations the initial fields demonstrate that both 3DVAR and 4DVAR methods effectively improve the model's initial fields by assimilating observational data. This is evidenced by the fact that the RMSE of the 3DVAR and 4DVAR analysis fields is consistently smaller than the RMSE of the original model initial fields when compared to observations and for all fields, including wind, temperature, moisture, and pressure. This study further reveals that the 4DVAR method offers superior improvements in the initial fields compared to the 3DVAR method. Under the same conditions, the RMSE of 4DVAR analysis fields is generally smaller than that of 3DVAR analysis fields. The evaluation based on the POD and FAR indices indicates that the forecast skill of the 4DVAR case is better than that of 3DVAR, especially at larger rainfall thresholds above 50 mm, which is clearly reflected in the 24-hour accumulated rainfall forecast.
Keywords
Cite this paper
Nam, N.D.; Thanh, C.T.; Thang, V.V.; Kien, T.B. Data assimilation for tropical cyclone-induced rainfall forecasting for central Viet Nam. J. Hydro-Meteorol. 2025, 22, 20–34.
References
1. Lorenc, A.C. Analysis methods for numerical weather prediction. Q. J. R. Meteorolog. Soc. 1986, 112(474), 1177–1194.
2. Talagrand, O.; Courtier, P. Variational assimilation of meteorological observations with the adjoint vorticity equation I: Theory. Q. J. R. Meteorolog. Soc. 1987, 113(478), 1311–1328. https://doi.org/10.1002/qj.49711347812.
3. Gauthier, P.; Thépaut, J. N. Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-France. Mon. Weather Rev. 2001, 129(8), 2089–2102.
4. Laroche, S.; Gauthier, P.; St–James, J.; Morneau, J.; Laroche, S. Implementation of a 3D variational data assimilation system at the Canadian meteorological centre. Part II: The regional analysis. Atmos. Ocean 1999, 37(3), 281–307. https://doi.org/10.1080/07055900.1999.9649630.
5. Laroche, S.; Tanguay, M.; Zadra, A.; Morneau, J. Use of adjoint sensitivity analysis to diagnose the CMC global analysis performance: A case study. Atmosphere Ocean 2002, 40(4), 423–443. https://doi.org/10.3137/ao.400404.
6. Kleist, D.T.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Errico, R.M.; Yang, R. Improving incremental balance in the GSI 3DVAR analysis system. Mon. Weather Rev. 2009, 137(3), 1046–1060.
7. Derber, J.C.; Parrish, D.F.; Lord, S.J. The new global operational analysis system at the national meteorological center. Weather Forecasting 1991, 6(4), 538–547.
8. Ishikawa, Y.; Koizumi, K. Meso–scale analysis. Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO Technical Progress Report on the Global Data–Processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP). Japan Meteorological Agency, Tokyo, Japan, 2002, pp. 26–31.
9. Sato, Y. Introduction of variational bias correction technique into the JMA global data assimilation system. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modeling, Rep, 2007, 37, pp. 0126–0127.
10. Barker, D.M.; Huang, W.; Guo, Y.R.; Bourgeois, A.J.; Xiao, Q.N. A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Weather Rev. 2004, 132(4), 3241–3258. https://doi.org/10.1175/1520–0493(2004)132<0897:ATVDAS>2.0.CO2.
11. Huang, X.Y.; Xiao, Q.; Barker, D.M.; Zhang, X.; Michalakes, J.; Huang, W.; Henderson, T.; Bray, J.; Chen, Y.; Ma, Z.; Dudhia, J.; Guo, Y.; Zhang, X.; Won, D.J.; Lin, H.C.; Kuo, Y.H. Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Monthly Weather Rev. 2009, 137(1), 299–314. https://doi.org/10.1175/2008MWR2577.1.
12. Zhang, F.; Zhang, M.; Poterjoy, J. E3DVar: Coupling an ensemble kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar. Monthly Weather Rev. 2013, 141(3), 900–917. https://doi.org/10.1175/MWR-D-12-00075.1.
13. Errico, R.M. What is an adjoint model? Bull. Am. Meteorol. Soc. 1997, 78(11), 2577–2591. https://doi.org/10.1175/1520-0477(1997)078<2577:wiaam>2.0.co;2.
14. Sun, J.; Xue, M.; Wilson, J.W.; Zawadzki, I.; Ballard, S.P.; Onvlee-Hooimeyer, J.; Joe, P.; Barker, D.M.; Li, P.W.; Golding, B.; Xu, M.; Pinto, J. Use of nwp for nowcasting convective precipitation: Recent progress and challenges. Bull. Am. Meteorol. Soc. 2014, 95(3), 409–426. https://doi.org/10.1175/BAMS-D-11-00263.1.
15. Sun, J.; Crook, N.A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci. 1997, 54(12), 1642–1661. https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.
16. Chu, K.; Xiao, Q.; Liu, C. Experiments of the WRF three-/four-dimensional variational (3/4DVAR) data assimilation in the forecasting of Antarctic cyclones. Meteorol. Atmos. Physics, 2013, 120(3–4), 145–156. https://doi.org/10.1007/s00703-013-0243-y.
17. Sun, J.; Wang, H. Radar data assimilation with WRF 4D-var. Part II: Comparison with 3D-var for a squall line over the U.S. great plains. Monthly Weather Rev. 2013, 141(7), 2245–2264. https://doi.org/10.1175/MWR-D-12-00169.1.
18. Duc, L.; Thuy, D.L.; Trung, L.H. Construction of moisture fields for the HRM model using geostationary satellite data based on the three-dimensional variational (3DVAR) method. VN J. Hydrometeorol. 2007, 558, 22–32.
19. Tien, T.T.; Hoa, D.N.Q. Experiments on using WRF model data assimilation of coupled 3DVAR – LETKF in predicting the geneses of tropical cyclones in the Vietnamese East Sea. VNU J. Sci.: Earth Environ. Sci. 2018, 34(1S), 77–89. https://doi.org/10.25073/2588-1094/VNUEES.4338.
20. Du, T.D.; Duc, T.N.; Kieu, C. Initializing the WRF model with tropical cyclone real-time reports using the ensemble Kalman filter algorithm. Pure Appl. Geophys. 2017, 174(7), 2803–2825. https://doi.org/10.1007/S00024-017-1568-0/METRICS.
21. Thuc, T.T.; Thanh, C. Radar data assimination in WRF model to forecast heavy rainfall at Ho Chi Minh City. VNU J. Sci.: Earth Environ. Sci. 2018, 34(1S), 59–70. https://doi.org/10.25073/2588-1094/vnuees.4336.
22. Phuong, L.L.; Nam, P.Q.; Duc, T.Q.; Tan, P.V. An experiment for assimilating different type of data observations in forecasting heavy rainfall over central highlands region due to the impact of hurricane Damrey. VNU J. Sci.: Earth Environ. Sci. 2019, 35(4), 121–129. https://doi.org/10.25073/2588-1094/VNUEES.4478.
23. Nam, N.D.; Manh, N.T.; Anh, N.X.; Khuung, P.L.; Linh, N.T.; Hiep, N.V. Application of Data Assimilation for High–Resolution Simulation of Meteorological Variables over Than Uyen area (Lai Chau). Vietnam J. Hydrometeorol. 2021, 724(4), 59–71. https://doi.org/10.36335/vnjhm.2021(724).59-71.
24. Thang, V.V.; Thuc, T.D.; Trung, N.Q. Data assimilation with WRF 4d-Var for rainfall forecasting over the south of Vietnam. VN J. Hydrometeorol. 2019, EME2, 174–185. https://doi.org/10.36335/vnjhm.2019(eme2).174-185.