Authors

Affiliations

1 Lao Cai Campus, Thai Nguyen University; luuthicuc@tnu.edu.vn; cuc41mta@gmail.com

2 Thai Nguyen University; hoangvanhung@tnu.edu.vn

3 Center for Advanced Technology Development, Thai Nguyen University; tapvh@tnus.edu.vn; vanhuutap@gmail.com

*Corresponding author: tapvh@tnus.edu.vn; Tel.: +84–983465086

Abstracts

This paper provides an overview of ozone technology in leachate treatment, including its characteristics, sources, treatment efficiency, and challenges. The research elucidates the efficacy of ozone-based methodologies in eliminating pollutants, such as chemical oxygen demand (COD) and ammonium nitrogen (NH4+-N), from leachate, attaining removal rates of up to 99.8% for COD and 91.14% for NH4+-N under optimized experimental conditions. Nevertheless, significant drawbacks persist, encompassing elevated energy consumption, the possible generation of deleterious byproducts (e.g., bromates and aldehydes), and compliance with regulatory frameworks. This review further delineates recent progress in ozone-mediated leachate treatment and delineates critical obstacles to its future application, with a particular focus on Vietnam. In this context, Vietnam produces approximately 4.3 million tons of municipal solid waste annually, of which over 70% is consigned to landfills, yet the resultant leachate remains insufficiently managed, contributing to environmental degradation. The investigation adopts a methodical framework, incorporating data analysis, consolidation of results, and a comparative assessment of literature spanning 2014 to 2025. The outcomes serve as a valuable resource for researchers and policymakers interested in leachate management and ozone technology applications, offering a clear foundation and direction for future investigations.

Keywords

Cite this paper

Cuc, L.T.; Hung, H.V.; Tap, V.H. Application of ozone technology in leachate treatment for sustainable development: A brief review. J. Hydro-Meteorol. 2025, 23, 88-99.

References

1. Li, S.; Yang, Y.; Zheng, H.; Zheng, Y.; Jing, T.; Ma, J.; Nan, J.; Leong, Y.K.; Chang, J.S. Advanced oxidation process based on hydroxyl and sulfate radicals to degrade refractory organic pollutants in landfill leachate. Chemosphere 2022, 297, 134214. doi: 10.1016/j.chemosphere.2022.134214.

2. Ahmed, S.F.; M. Mofijur, M.; Samiha Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Abrar Inayat, A.; Mahlia, T.M.I.; Hwai Chyuan Ong, H.C.; Chia, W.Y.; Show, P.L. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. doi: 10.1016/J.JHAZMAT.2021.125912.

3. Lebron, Y.A.R.; Moreira, V.R.; Brasil, Y.L.; Silva, A.F.R.; de Souza Santos, L.V.; Lange, L.C.; Amaral, M.C.S. A survey on experiences in leachate treatment: Common practices, differences worldwide and future perspectives. J. Environ. Manage. 2021, 288, 112475. doi: 10.1016/j.jenvman.2021.112475.

4. Iskander, S.M.; Zhao, R.; Pathak, A.; Gupta, A.; Pruden, A.S.; Novak, J.T.; He, Z. A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment. Water Res. 2018, 145, 297–311. doi: 10.1016/j.watres.2018.08.035.

5. Abdel-Shafy, H.I.; Ibrahim, A.M.; Al-Sulaiman, A.M.; Okasha, R.A. Landfill leachate: Sources, nature, organic composition, and treatment: An environmental overview. Ain Shams Eng. J. 2024, 15(1), 102293. doi: 10.1016/J.ASEJ.2023.102293.

6. Ministry of Natural Resources and Environment of Vietnam. No. 10822/BTNMT-KSONMT, Reporting on the results of implementing domestic solid waste management nationwide. 2023.

7. Lovato, M.; Buffelli, J.R.; Abrile, M.; Martín, C.; Kinetics and efficiency of ozone for treatment of landfill leachate including the effect of previous microbiological treatment. Environ. Sci. Pollut. Res. 2018, 26, 4474–4487.

8. Maroneze, M.M.; Zepka, L.Q.; Vieira, J.G.; Queiroz, M.I.; Jacob-Lopes, E. A tecnologia de remoção de fósforo: Gerenciamento do elemento em resíduos industriais. Rev. Ambient. Agua. 2014, 9(3), 445–458. doi: 10.4136/1980-993X.

9. Moody, C.M.; Townsend, T.G. A comparison of landfill leachates based on waste composition. Waste Manag. 2017, 63, 267–274. doi: 10.1016/j.wasman.2016.09.020.

10. Abdel-Shafy, H.I.; Ibrahim, A.M.; Al-Sulaiman, A.M.; Okasha, R.A. Landfill leachate: Sources, nature, organic composition, and treatment: An environmental overview. Ain Shams Eng. J. 2024, 15(1), 102293. doi: 10.1016/J.ASEJ.2023.102293.

11. Vaccari, M.; Tudor, T.; Vinti, G. Characteristics of leachate from landfills and dumpsites in Asia, Africa and Latin America: an overview. Waste Manag. 2019, 95, 416–431. doi: 10.1016/J.WASMAN.2019.06.032.

12. Boner, M.; Lau, P.J. Wastewater technology fact sheet ozone disinfection. United States Environ. Prot. Agnecy, 2019, pp. 1–7. Online Available: https://www3.epa.gov/npdes/pubs/ozon.pdf.

13. Huang, Z.; Liu, G.; Zhang, Y.; Yuan, Y.; Xi, B.; Tan, W. Assessing the impacts and contamination potentials of landfill leachate on adjacent groundwater systems. Sci. Total Environ. 2024, 930, 172664. doi: 10.1016/j.scitotenv.2024.172664.

14.  Daniel, A.N.; Ekeleme, I.K.; Onuigbo, C.M.; Ikpeazu, V.O.; Obiekezie, S.O. Review on effect of dumpsite leachate to the environmental and public health implication. GSC Adv. Res. Rev. 2021, 7(2), 51–60. doi: 10.30574/gscarr.2021.7.2.0097.

15. van Vuuren, D.P.; Stehfest, E.; Elzen, M.D.; Kram, T.; van Vliet, J.; Deetman, S.; Isaac, M.; Goldewijk, K.; Hof, A.; Beltran, A.; Oostenrijk, R. RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim. Change 2018, 109, 95. doi: 10.1007/s10584-011-0152-3.

16. Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging contaminants of high concern for the environment: Current trends and future research. Environ. Res. 2022, 207, 112609. doi: 10.1016/J.ENVRES.2021.112609.

17. Brodowska, A.J.; Nowak, A.; Śmigielski, K. Affiliations expand ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit. Rev. Food Sci. Nutr. 2018, 58(13), 2176–2201. doi: 10.1080/10408398.2017.1308313.

18. Wang, M.X.B.; Shi, W.; Zhang, H.; Ren, H. Promoting the ozone-liquid mass transfer through external physical fields and their applications in wastewater treatment: A review. J. Environ. Chem. Eng. 2021, 9, 106115. doi: 10.1016/j.jece.2021.106115.

19. Bai, Z.W.S.; Du, S.; Liu, H.; Lin, S.; Zhao, X.; Wang, Z. The causal and independent effect of ozone exposure during pregnancy on the risk of preterm birth: Evidence from northern China. Environ. Res. 2022, 214, 113879. doi: 10.1016/j.envres.2022.113879.

20. Shi, X.S.W.; Sun, Q.; Du, P.; Tang, S.; Chen, C.; Sun, Z.; Wang, J.; Li, T. Modification Effects of Temperature on the Ozone–Mortality Relationship: A Nationwide Multicounty Study in China. Environ. Sci. Technol. 2020, 54, 2859–2868. doi: 10.1021/acs.est.9b05978.

21. Zhang, R.W.G.; Hu, Q.; Cao, R.; Fu, R.; Risalat, H.; Pan, X.; Hu, Y.; Shang, B. Yield loss in rice by acute ozone pollution could be recovered. Agric. Environ. Lett. 2022, 7, 1–5. doi: 10.1002/ael2.20093.

22. Ahmed, S.F.; Mofijur, M.; Rafa, N.; Chowdhury, A.T.; Chowdhury, S.; Nahrin, M.; Islam, A.B.M.S.; Ong, H.C. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ. Res. 2022, 204, 111967. doi: 10.1016/j.envres.2021.111967.

23. Duan, Y.; Gao, B.; Liu, J.; Wang, X.; Sillanpää, M. Treatment of landfill leachate in the MBR and catalytic ozonation coupled system based on MnNi catalyst: Efficiency and bio/chemical mechanism. J. Water Process Eng. 2024, 66, 106033. doi: 10.1016/J.JWPE.2024.106033.

24. Song, Q.; Kong, F.; Liu, B.F.; Song, X.; Ren, N.Q.; Ren, H.Y. Ozone oxidation of actual waste leachate coupled with culture of microalgae for efficient lipid production under different temperatures. Water Res. 2025, 277, 123305. doi: 10.1016/J.WATRES.2025.123305.

25. Zhe, J.; He, H.; Yi, Z.; Guo, Z.; Xu, H.; Huang, B.; Pan, X. Mechanism and molecular level insight of refractory dissolved organic matter in landfill leachate treated by electroflocculation coupled with ozone. Sep. Purif. Technol. 2025, 356, 129812. doi: 10.1016/j.seppur.2024.129812.

26. Shi, Y.; Sun, A.; Zhang, G.; Zhang, G. Combined coagulation-adsorption-VUV (persulfate)-electrochemical oxidation processes for efficient treatment of aged landfill leachate. J. Water Process Eng. 2025, 71, 107281. doi: 10.1016/j.jwpe.2025.107281.

27. Yang, X.; Liu, Z.; Chen, C.; Zhang, T.; Wang, Q.; Zhang, R.; Duan, F.; Tian, X.; Yao, M.; Demeestere, K.; Van Hulle, S.W.H. Hybrid packed bed bioreactor using combined biodegradation and ozonation to enhance nitrogen and micropollutants removal from landfill leachate. Bioresour. Technol. 2024, 412, 131413. doi: 10.1016/j.biortech.2024.131413.

28. Amaral-Silva, N.; Martins, R.C.; Castro-Silva, S.; Quinta-Ferreira, R.M. Ozonation and perozonation on the biodegradability improvement of a landfill leachate. J. Environ. Chem. Eng. 2016, 4(1), 527–533. doi: 10.1016/J.JECE.2015.12.002.

29. Abu Amr, S.S.; Alazaiza, M.Y.D.; Bashir, M.J.; Alkarkhi, A.F.M.; Aziz, S.Q. The performance of S2O82−/ Zn2+ oxidation system in landfill leachate treatment. Phys. Chem. Earth Parts A/B/C 2020, 120, 102944. doi: 10.1016/J.PCE.2020.102944.

30. Health and Safety Executive. Ozone : Health hazards and control measures. Guid. Note EH38, 2014, pp. 1–10.

31. Shah, A. Some Wastewater Reuse Processes Can Lead to Undesired Byproducts. USC Viterbi Sch. Eng. Environ. Sci. Technol., 2020. Online Available: https://viterbischool.usc.edu/news/2020/02/some-wastewater-reuse-processes-can-lead-to-undesired-byproducts/.

32. Rougé, V.; von Gunten, U.; de Sentenac, M.L.; Massi, M.; Wright, P.J.; Crouéae, J.P.;  Allard, S.  Comparison of the impact of ozone, chlorine dioxide, ferrate and permanganate pre-oxidation on organic disinfection byproduct formation during post-chlorination. Environ. Sci. Water Res. Technol. 2020, 6(9), 2382–2395. doi: 10.1039/d0ew00411a.

33. Wang, R.J.X.; Wang, X.; Mi, J.; Du, Q.; Wang, Y.; Chen, W.; Sun, D.; Song, W.; Shao, M. UV/H2O2/O3 removal efficiency and characterization of algae-derived organic matter and odorous substances. J. Environ. Chem. Eng. 2022, 11, 109128. doi: 10.1016/j.jece.2022.109128.

34. Lan, N.N. Research on the application of advanced oxidation method (AOP) in wastewater treatment containing organic compounds that are difficult to biodegrade. Institute of Environmental Science and Technology, 2014, pp. 140.

35. Tap, V.H.; Van, T.T. Reatment of organic compounds of landfill leachate in Vietnam by combining coagulation and ozonation process Am. J. Environ. Sci. 2013, 9, 518–528.

36. Van, H.T.; Nguyen, L.H.; Hoang, T.K.; Tran, T.P.; Vo, A.T.; Pham, T.T.; Nguyen, X.C. Using FeO-constituted iron slag wastes as heterogeneous catalyst for Fenton and ozonation processes to degrade Reactive Red 24 from aqueous solution. Sep. Purif. Technol. 2019, 224, 431–442.

37. Nguyen, M.B.; Le, G.H.; Pham, T.T.T.; Pham, G.T.T.; Quan, T.T.T.; Nguyen, T.D.; Vu, T.A. Novel nano-Fe2O3-Co3O4 modified dolomite and its use as highly efficient catalyst in the ozonation of ammonium solution. J. Nanomater. 2020, 2020, 1–11.