Authors

Affiliations

South Central hydrometeorological center; buivanchanh@gmail.com; truongmeteo@gmail.com

HCMC University of Natural resources environment; ctvan@hcmunre.edu.vn

Institute for Environment and Resources, VNU of Ho Chi Minh City; haiauvtn@gmail.com

4 Institute for Water Resources and Environment Research, Thuyloi University; theviet8387@gmail.com

*Corresponding author: ctvan@hcmunre.edu.vn; Tel.: +84−983738347

Abstracts

The nonlinear kinematic wave model is developed from the Saint Venant system of equations, which includes a nonlinear kinematic wave program that solves the system of equations by Newton's iterative method and a linear kinematic wave program for calculations initial flow value. The developed model is tested with sample problems and compared with the simulation results by Mike 11 model on Tra Khuc river. Evaluating the simulation results of these two models show that, the simulation results of the Mike 11 model are better than the kinematic wave model, not significantly in the upstream and midstream flow, but significantly in the downstream flow of the Tra Khuc river. The simultaneous results show that the 1−dimensional kinetic wave model has sufficient reliability and applicability.

Keywords

Cite this paper

Chanh, B.V.; Van, C.T.; Anh, V.T.V.; Au, N.H.; Viet, C.T.; Truong, N.H. Developing a 1D kinematic wave model for simulating the downstream flow of Tra Khuc river. VN. J. Hydrometeorol. 2022, 13, 105-117. 

References

1. Chanh, B.V.; Anh, T.N.; Huấn, N.Q.; Hoan, N.T. Testing the integration of Tank model and One-dimensional dynamic wave for medium-term hydrological forecasting in Ba river basin. VN J. HydroMeteorol. 2021, 722, 38−48.

2. Chanh, B.V.; Anh, T.N.; Anh, L.T. Development of nonlinear one-dimensional dynamic wave model for river network and experimental application for Dinh Ninh Hoa river basin. VN J. HydroMeteorol. 2017, 684, 41−45.

3. Chanh, B.V.; Anh, T.N.; Anh, L.T. Simulation of river flow using nonlinear 1D- kinetic waves. J. Sci. VNU Hanoi: Earth. Environ. Sci. 2016, 32(3S), 14−19.

4. Lighthill, M.J.; Whitham, G.B. A Theory of Traffic Flow on Long Crowded Roads. Proceedings of the Royal Society of London A, 1955, 229, 317-345. http://dx.doi.org/10.1098/rspa.1955.0089.

5. Weinmann, P.E.; Laurenson, E.M. Approximate flood routing methods: a review. J. Hydraul. Div. ASCE 1979, 105(12), 1521–1526.

6. Cunge, J.A. On The Subject Of A Flood Propagation Computation Method (Muskingum 2057 Method). J. Hydraul. Res. 1969, 7, 205–230.

7. Woolhiser, D.A. Simulation of unsteady overland flow. In: Mahmood, K.; Yevjevich, V (Editors), Unsteady Flow in Open Channels, Vol. II. Water Resources Publication, Fort Collins, CO, 1975, pp. 502.

8. Dawdy, D.R. et al. User's guide for distributed routing rainfall-runoff model U.S. Geol. Surv. Water Resour. Invest. 1978, 78–90.

9. Jaccvkis, P.M.; Tabak, E.G. A Kinematic Wave Model for Rivers with Flood Plains and Other Irregular Geometries. Math. Comput. Modell. 1996, 24(11), 1−21.

10. Nwaogazie, I.L. Kinematic-wave simulation program for natural rivers. Adv. Eng. Software 1978, 8(1), 32–45.

11. Huang, H. Finite Difference Solutions of Incompressible Flow Problems with Corner Singularities. J. Sci. Comput. 200015(3), 265–292. Doi:10.1023/A:1011138516712

12. Henderson. Open chanel flow. (Eds.), Macmillan puplising Co., INC., 1966, pp. 273.

13. Woolhiser, D.A.; Liggett, J.A. Unsteady, one-dimensional flow over a plane–The rising hydrograph. Water Resour. Res. 1967, 3(3), 753–771.

14. Hubert, J.M.S.; Fahmy, H.; Lamagat, J.P. A composite hydraulic and statistical flow-routing method. Water Resour. Res. 1993, 29(2), 413–418. Doi:10.1029/92WR01767.

15. Anh, L.T.; Son, N.T. Applying the finite element hydrodynamic model to describe the basin flow process. VNU J. Sci.: Nat. Sci. Technol. 2003, 19(1S), ISSN 2588-1140.

16. Ven, T.; David, R.M.; Larry, W.M. Applied Hydrology. New York: McGraw−Hill, 1988.

17. Chanh, B.V. Research for improvement of marine models to simulate and precaution of fluids for water basins without data − application to the south central region. PhD thesis, 2022.

18. Cuong, N.T.; Phương, T.T. Forecasting the discharge into Hoa Binh reservoir by applying the connecting model MARINE − IMECH1D. VN J. Mech. 2008, 30(3), 149−157.

19. Chanh, B.V.; Anh, T.N. Integrated hydrological forecasting model set of Tra Khuc river basin. J. Sci. VNU Hanoi: Earth Environ. Sci: Earth Environ. Sci. 2016, 32(3S), 20−25.

20. Chanh, B.V.; Anh, T.N.; Truong, N.H. Recovering data of Cai Phan Rang river by the method of integrating models. VN J. Hydrometeorol. 2016, 668, 39−44.

21. Chanh, B.V.; Anh, T.N. Testing the integration of MARINE model and one-dimensional dynamic wave model on Cai river basin in Nha Trang. J. Clim. Change. Sci. 2020, 14, 45−55.

22. Fattah, M.A.; Kantoush, S.A.; Saber, M.; Sumi T. Rainfall runoff Modeling for extrame flash floods in Wadi Samail (Oman). J. Jpn. Soc. Civ. Eng. Ser. B1 2018, 74(5), I_691−I_696.

23. Ify, L.N. Kinematic−wave simulation program for natural rivers. Adv. Eng. Software, 1986, 8(1), 32−45.

24. Lai, H.V.; Diep, N.V.; Cuong, N.T.; Phong, N.H. Coupling hydrological–hydraulic models for extreme flood simulating and forecasting on the North Central Coast of Vietnam. WIT Trans. Ecol. Environ. 2009, 124, 113−123.

25. Miller, J.E. Basic Concepts of Kinematic−Wave Models, U.S. Geol. Surv. Prof. Pap. 1984, pp. 1302.

26. Nghi, V.V.; Lam, H.B.N.; Anh T.P.; Van, C.T. Development and Application of a Distributed Conceptual Hydrological Model to Simulate Runoff in the Be River Basin and the Water Transfer Capacity to the Saigon River Basin – Vietnam. J. Environ. Sci. Eng. 2020, A9, 1−12.

27. Riccardo, R.; Giacomo, B.; Thomas, M.O. GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets. J. Hydrometeorol. 2006, 7(3), 371−388.

28. Robert, M.; Jahannes, J.D. Introduction and apolication of kinematic wave routing techniues using HEC−1, Hydrologic Engineering Center, Us Army Corps of Engineers, 1993.

29. Satish, B.; Vasubandhu, M. Evaluation of dynamically downscaled reanalysis precipitation data for hydrological application. Hydrol. Process 2013. http://wileyonlinelibrary.com.

30. Simons, D.B.; Li, R.M.; Stevens, M.A. Development of models for prediction water and sediment routing and yield from storms on small watershed. The University of Michigan, 1975.

31. Danish Hydraulic Institute. Mike Zero Manuals, Hørsholm, Denmark, 2016.  

32. MKE 21 Toolbox Reference Manual, DHI Software, 2011.