Authors
Affiliations
1 Vietnam National Center for Hydro-Meteorological Forecasting, 8 Phao Dai Lang Str.,
Hanoi 100000, Vietnam; taduc3@monre.gov.vn; mkhung@monre.gov.vn; ddquan@monre.gov.vn; dttrang2@monre.gov.vn; hgnam@monre.gov.vn
2 Vietnam Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany; taduc3@monre.gov.vn
3 Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan
4 Norwegian Meteorological Institute, 5007 Bergen, Norway; lrh@met.no
*Corresponding author: taduc3@monre.gov.vn; Tel.: +84–916106558
Abstracts
The research employs the Quantile Mapping (QM) post-processing method to improve the skill forecasts of the deterministic forecast of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). The selected research areais Central Vietnam, and the analysis utilizes observation data from 41 stations and 10-year ECMWF-IFS data from 2013 to 2022, with a lead time of up to 10 days for the QM applications. The findings indicate that the QM facilitates enhanced forecasting skills in the IFS model for all lead times up to 10 days, exhibiting varying magnitudes based on the specific lead time and rainfall thresholds. Notably, the impact of QM is found to be negligible for heavy rainfall events, with the skill limit being determined
Keywords
Cite this paper
Duc, T.A.; Hung, M.K.; Quan, D.D.; Trang, D.T.; Nam, H.G.; Lars, R.H.; Tien, D.D. Improving skill precipitation forecast of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) model by using the quantile mapping method for Central Vietnam. J. Hydro-Meteorol. 2025, 22, 71–81.
References
1. Cuong, H.D.; et al. Research on heavy rainfall forecast in Viet Nam by using MM5 model. Scientific research project report of Ministry of Natural Resources and Environment, 2008, pp. 190.
2. Hang, V.T.; Xin, K.T. The heavy rainfall forecast in the middle region of Viet Nam by using Heise convective parameterization scheme in HRM model. Sci. Tech. Hydro-Meteorol. J. 2007, 660, 49-54.
3. Hoa, V.V. Comparison of heavy rainfall forecast skill of some global NWP models for the middle and central highland area of Viet Nam. Sci. Tech. Hydro-Meteorol. J. 2016, 667, 1–8.
4. Hoa, V.V.; et al. Research on using of ECMWF forecast dataset in order to improve operational seasonal and monthly prediction in Viet Nam. Scientific research project report of Ministry of Natural Resources and Environment, 2017, pp. 150.
5. Tang, B.V.; et al. Developing the short range heavy rainfall forecast system to serve for flood early warning in the middle area of Viet Nam. Report of National Scientific Project, 2014, pp. 337.
6. Ba, T.D.; Hoa, V.V.; Tri, D.Q. A verification of short-term rainfall forecast by using ifs model of ECMWF on the northern central region. VN J. Hydrometeorol. 2019, 697, 33–43.
7. Nga, N.T.; Thanh, C.; Hung, M.K.; Tien, D.D. Verification of quantitative rainfall forecast from IFS and WRF model for the northern region of Viet Nam. VN J. Hydrometeorol. 2021, 730, 79–92.
8. Rayner, S.; Lach, D.; Ingram, H. Weather forecasts are for wimps: why water resource managers do not use climate forecasts. Clim. Change 2005, 69(2), 197–227.
9. Wu, L.; Seo, D.J.; Demargne, J.; Brown, J.D.; Cong, S.; Schaake, J. Generation of ensemble precipitation forecast from single-valued quantitative precipitation forecast for hydrologic ensemble prediction. J. Hydrol. 2011, 399(3–4), 281–298.
10. Robertson, D.E.; Shrestha, D.L.; Wang, Q.J. Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting. Hydrol. Earth Syst. Sci. 2013, 17(9), 3587–3603.
11. Tao, Y.; Duan, Q.; Ye, A.; Gong, W.; Di, Z.; Xiao, M.; Hsu, K. An evaluation of postprocessed TIGGE multimodel ensemble precipitation forecast in the Huai river basin. J. Hydrol. 2014, 519, 2890–2905.
12. Leutbecher, M.; Palmer, T.N. Ensemble forecasting. J. Comput. Phys. 2008, 227(7), 3515–3539.
13. Verkade, J.S.; Brown, J.D.; Reggiani, P.; Weerts, A.H. Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. J. Hydrol. 2013, 501, 73–91.
14. Maraun, D. Bias correcting climate change simulations - A critical review. Curr. Clim. Change Rep. 2016, 2(4), 211–220.
15. Vannitsem, S.; Bremnes, J.B.; Demaeyer, J.; Evans, G.R.; Flowerdew, J.; Hemri, S.; et al. Statistical postprocessing for weather forecasts: review, challenges, and avenues in a big data world. Bull. Am. Meteorol. Soc. 2021, 102, E681–E699.
16. Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19(6), 2547–2559.
17. Ghimire, U.; Srinivasan, G.; Agarwal, A. Assessment of rainfall bias correction techniques for improved hydrological simulation. Int. J. Climatol. 2019, 39(4), 2386–2399.
18. Niranjan Kumar, K.; Thota, M.S.; Ashrit, R.; Mitra, A.K.; Rajeevan, M.N. Quantile mapping bias correction methods to IMDAA reanalysis for calibrating NCMRWF unified model operational forecasts. Hydrol. Sci. J. 2019, 67(6), 870–885.
19. Baker, S.A.; Wood, A.W.; Rajagopalan, B. Developing subseasonal to seasonal climate forecast products for hydrology and water management. JAWRA J. Am. Water Resour. Assoc. 2019, 55(4), 1024–1037.
20. Theme, M.J.; Gobiet, A.; Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 2011, 31(10), 1530–1544.
21. Wilcke, R.A.I.; Mendlik, T.; Gobiet, A. Multi-variable error correction of regional climate models. Clim. Change, 2013, 120, 871–887.
22. Biemans, H.; Hutjes, R.W.A.; Kabat, P.; Strengers, B.J.; Gerten, D.; Rost, S. Effects of precipitation uncertainty on discharge calculations for main river basin catchments. J. Hydrometeorol. 2009, 10(4), 1011–1025.
23. McMillan, H.; Jackson, B.; Clark, M.; Kavetski, D.; Woods, R. Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models. J. Hydrol. 2011, 400(1–2), 83–94.
24. McMillan, H.; Krueger, T.; Freer, J. Benchmarking observational uncertainties for hydrology: rainfall, river discharge and water quality. Hydrol. Processes 2012, 26(26), 4078–4111.
25. Shastri, H.; Ghosh, S.; Karmakar, S. Improving global forecast system of extreme precipitation events with regional statistical model: Application of quantile-based probabilistic forecasts. J. Geophys. Res.: Atmos. 2017, 122(3), 1617–1634.
26. Tani, S.; Gobiet, A. Quantile mapping for improving precipitation extremes from regional climate models. J. Agrometeorol. 2019, 21(4), 434–443.
27. Li, W.; Duan, Q.; Miao, C.; Ye, A.; Gong, W.; Di, Z. A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdiscip. Rev.: Water 2017, 4(6), e1246. https://doi.org/10.1002/wat2.1246.
28. Troin, M.; Arsenault, R.; Wood, A.W.; Brissette, F.; Martel, J.L. Generating ensemble streamflow forecasts: A review of methods and approaches over the past 40 years. Water Resour. Res. 2021, 57(7), e2020WR028392.
29. Katiraie-Boroujerdy, P.S.; Rahnamay Naeini, M.; Akbari Asanjan, A.; Chavoshian, A.; Hsu, K.L.; Sorooshian, S. Bias correction of satellite-based precipitation estimations using quantile mapping approach in different climate regions of Iran. Remote Sens. 2020, 12(13), 2102.
30. Li, X.; Wu, H.; Nanding, N.; Chen, S.; Hu, Y.; Li, L. Statistical Bias Correction of Precipitation Forecasts Based on Quantile Mapping on the Sub-Seasonal to Seasonal Scale. Remote Sens. 2023, 15(7), 1743.
31. Maurer, E.P.; Pierce, D.W. Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol. Earth Syst. Sci. 2014, 18(3), 915–925.
32. Miao, C.; Su, L., Sun, Q.; Duan, Q. A nonstationary bias-correction technique to remove bias in GCM simulations. J. Geophys. Res.: Atmos. 2016, 121(10), 5718–5735.
33. Trinh-Tuan, L.; Matsumoto, J.; Tangang, F.T.; Juneng, L.; Cruz, F.; Narisma, G.; Ngo-Duc, T. Application of quantile mapping bias correction for mid-future precipitation projections over Vietnam. Sola 2019, 15, 1–6.