1 Ho Chi Minh City University of Natural Resources and Environment;;

*Correspondence:; Tel.: +84-906263355


The coastline is an important component of coastal management studies. The coastline changes rapidly over time, therefore it is necessary to have methods of monitoring the shoreline quickly and continuously. In this study, Sentinel–1A satellite imagery is used to extract the coastline in Phan Thiet City. The boundary between land and water is determined by a two–step process: fuzzy clustering and interactive thresholding. Subsequently, the coastline in the study area was extracted into vector form. Finally, this shoreline is compared to manually digitized shoreline. There are 350 locations considered to determine the distance between two shorelines, of which 274 locations (77%) are 0 to 5 m (equivalent to ½ pixel) and 76 (23%) locations are over 5 m. In addition, the DSAS statistics has also provided a detailed view of the seasonal change of shoreline for two years (2016 and 2017). The study results showed that effective application capabilities of Sentinel–1A radar satellite image data to quickly assess the erosion/accretion of coastal areas.


Cite this paper

Nhi, H.T.; Thoa, N.T.K. Coastline changes detection from Sentinel–1 satellite imagery using spatial fuzzy clustering and interactive thresholding method in Phan Thiet, Binh Thuan. VN J. Hydrometeorol. 2020, 6, 1-10. 


1. Winarso, G.; Budhiman, S. The potential application of remote sensing data for coastal study. Proceedings of the Asian Conference on Remote Sensing, Singapore. 2001.

2. Dolan, R.; Hayden, B.P.; May, P.; May, S. The reliability of shoreline change measurements from aerial photographs. Shore Beach 1980, 48, 22–29.

3. Boak, E.H.; Turner, I.L. Shoreline definition and detection: a review. J. Coastal Res. 2005, 688–703.

4. Morton, R.A. Accurate shoreline mapping: past, present, and future. Proceedings of the Coastal Sediments, ASCE, 1991.

5. Smith, G.L.; Zarillo, G.A. Calculating long–term shoreline recession rates using aerial photographic and beach profiling techniques. J. Coastal Res. 1990, 111–120.

6. Eriksson, E.L.; Persson, M.H. Sediment transport and coastal evolution at Thuan An Inlet, Vietnam, 2014.

7. Ali, T. Along–shore sediment transport estimation and shoreline change prediction: a comparative study. Whitepaper–uploadfile, Department of Engineering Technology University of Central Florida, viewed, 2009.

8. Williams, J.J.; Esteves, L.S. Predicting shoreline response to changes in longshore sediment transport for the Rio Grande do Sul coastline. Braz. J. Aquat. Sci. Tech. 2008, 10, 1–9.

9. Leatherman, S.P. Coastal erosion: mapping and management. Coastal Education & Research 1997, 24.

10. Kannan, R.; Ramanamurthy, M.V.; Kanungo, A. Shoreline Change Monitoring in Nellore Coast at East Coast Andhra Pradesh District Using Remote Sensing and GIS, Proceedings of the Fisheries Livest, 2016.

11. Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Change. 2004, 64, 41–52.

12. Shetty, A.; Jayappa, K.S.; Mitra, D. Shoreline change analysis of Mangalore coast and morphometric analysis of Netravathi–Gurupur and Mulky–Pavanje spits. Aquat. Procedia. 2015, 4, 182–189.

13. Leatherman, S.P. Shoreline mapping: a comparison of techniques. Shore Beach 1983, 51, 28–33.

14. Li, R.; Di, K.; Ma, R. A comparative study of shoreline mapping techniques. GIS Coastal Zone Manage. 2001, 53–60.

15. Dolan, R.; Fenster, M.S.; Holme, S.J. Temporal analysis of shoreline recession and accretion. J. Coastal Res. 1991, 723–744.

16. Gens, R. Remote sensing of coastlines: detection, extraction and monitoring. Int. J. Remote Sens. 2010, 31, 1819–1836.

17. Chen, L.C.; Shyu, C.C. Automated extraction of shorelines from optical and SAR images. Proceedings of the Asian Conference on Remote Sensing, Manila, Philipine, 1998.

18. Ouma, Y.O.; Tateishi, R. A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. Int. J. Remote Sens. 2006, 27, 3153–3181.

19. Sekovski, I.; Stecchi, F.; Mancini, F.; Rio, L.D. Image classification methods applied to shoreline extraction on very high–resolution multispectral imagery. Int. J. Remote Sens. 2014, 35, 3556–3578.

20. Behling, R.; Milewski, R.; Chabrillat, S. Spatiotemporal shoreline dynamics of Namibian coastal lagoons deried by a dense remote sensing time series approach. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 262–271.

21. Zulkifle, A.A.; Hassan, R.; Othman, R.M.; Sallow, A.B. Supervised classification and improved filtering method for shoreline detection. J. Theor. Appl. Inf. Technol. 2017, 95, 5628–5636.

22. Lee, J.S.; Jurkevich, I. Coastline detection and tracing in SAR images. IEEE Trans. Geosci. Remote Sens. 1990, 28, 662–668.

23. Braga, F.; Tosi, L.; Prati, C.; Alberotanza, L. Shoreline detection: capability of COSMO–SkyMed and high–resolution multispectral images. Eur. J. Remote Sens. 2013, 46, 837–853.

24. Heine, I.E. Long–term monitoring of lakes in the northern central European lowlands using optical and radar remote sensing imagery. Doktor der Naturwissenschaften, Berlin, 2017.

25. Rozenstein, O.; Siegal, Z.; Blumberg, D.G.; Adamowski, J. Investigating the backscatter contrast anomaly in synthetic aperture radar (SAR) imagery of the dunes along the Israel–Egypt border. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 13–21.

26. MacDonald, H.C.; Lewis, A.J.; Wing, R.S. Mapping and Land form Analysis of Coastal Regions with Radar. Geol. Soc. Am. Bull. 1971, 82, 345–358.

27. Yousef, A.; Iftekharuddin, K. Shoreline extraction from the fusion of LiDAR DEM data and aerial images using mutual information and genetic algrithms. In Neural Networks (IJCNN), Proceedings of the International Joint Conference, 2014.

28. Liu, H. Shoreline mapping and coastal change studies using remote sensing imagery and LIDAR data. Proceedings of the Remote sensing and geospatial technologies for coastal ecosystem assessment and management, 2009.

29. Caixia, Y.; Jiayao, W.; Jun, X. Advance of coastline extraction technology. Int. J. Geomatics Geosci. 2014, 31, 305–309.

30. Stephen P Leatherman, Shoreline change mapping and management along the US East Coast. J. Coastal Res. 2003, 5–13.

31. Vandebroek, E.; Lindenbergh, R.; van Leijen, F.; de Schipper, M.; de Vries, S.; Hanssen, R. Semi–Automated Monitoring of a Mega–Scale Beach Nourishment Using High–Resolution TerraSAR–X Satellite Data. Remote Sens. 2017, 9, 653.

32. Goodman, J.W. Some fundamental properties of speckle. JOSA 1976, 66, 1145–1150.

33. Liu, H.; Jezek, K.C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 2004, 25, 937–958.

34. Buono, A.; Nunziata, F.; Mascolo, L.; Migliaccio, M. A multipolarization analysis of coastline extraction using X–band COSMO–SkyMed SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2811–2820.

35. Sheng, G.; Yang, W.; Deng, X.; He, C.; Cao, Y.; Sun, H. Coastline detection in synthetic aperture radar (SAR) images by integrating watershed transformation and controllable gradient vector flow (GVF) snake model. IEEE J. Oceanic Eng. 2012, 37, 375–383.

36. Erteza, I.A. An automatic coastline detector for use with SAR images. Sandia National Laboratories (SNL–NM), Albuquerque, NM, 1998.

37. Markiewicz, L.; Mazurek, P.; Chybicki, A. Coastline change–detection method using remote sensing satellite observation data. Hydroacoustics. 2016, 19, 277–284.

38. Bioresita, F.; Hayati, N. Coastline changes detection using Sentinel–1 satellite imagery in Surabaya, East Java, Indonesia. Geoid. 2016, 11, 190–198.

39. Zhang, H.; Zhang, B.; Guo, H.; Lu, J.; He, H. An automatic coastline extraction method based on active contour model. Proceedings of the Geoinformatics (GEOINFORMATICS) International Conference, 2013.

40. Baselice, F.; Ferraioli, G. Unsupervised coastal line extraction from SAR images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1350–1354.

41. Liu, Y. Coastline detection from remote sensing image based on K–mean cluster and distance transform algorithm. Adv. Mater. Res. 2013, 760–762, 1567–1571.

42. Ning, J.; Zhang, L.; Zhang, D.; Wu, C. Interactive image segmentation by maximal similarity based region merging. Pattern Recognit. 2010, 43, 445–456.

43. Modava, M.; Akbarizadeh, G. A level set based method for coastline detection of SAR images. Proceedings of the Pattern Recognition and Image Analysis International Conference, 2017.

44. Paes, R.L.; Nunziata, F.; Migliaccio, M. Coastline extraction and coastal area classification via SAR hybrid–polarimetry architecture. Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), 2015.

45. Liu, Z.; Li, F.; Li, N.; Wang, R.; Zhang, H. A novel region–merging approach for coastline extraction from Sentinel–1A IW mode SAR imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 324–328.

46. Modava, M.; Akbarizadeh, G. Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method. Int. J. Remote Sens. 2017, 38, 355–370.

47. Demir, N.; Kaynarcaa, M.; Oya, S. Extraction of coastlines with fuzzy approach using SENTINEL–1 SAR image. ISPRS–International Archives of the Photogrammetry, Proceedings of the Remote Sensing and Spatial Information Sciences, 2016.

48. Demir, N.; Oy, S.; Erdem, F.; Şeker, D.Z.; Bayram, B. Integrated shoreline extraction approach with use of Rasat MS and Sentinel–1a SAR images. ISPRS Annals of Photogrammetry, Proceedings of the Remote Sensing & Spatial Information Sciences, 2017.

49. Long, B.H. Một số kết quả khảo sát, nghiên cứu hiện tượng xói lở, bồi tụ khu vực ven biển Bình Thuận, 2004.